DES in the News

All the news about DES that’s fit to print!

Beyond the Dark Energy Survey – Illinois astronomers look to the future after mapping the skies

For the past six years, the Department of Astronomy and the National Center for Supercomputing Applications (NCSA) at the University of Illinois have been closely involved with one of the most sensitive and comprehensive surveys of distant galaxies ever performed. Now that the survey is complete, they will analyze the vast amounts of data that’s been collected to better understand our universe.

In January, the Dark Energy Survey (DES) stopped collecting data after scanning a quarter of the southern skies and cataloguing hundreds of millions of distant galaxies. Now, astronomers anticipate that they will continue to refine this data for use by scientists into 2021.

“DES is leading the way for data science intensive research at Illinois,” said Leslie Looney, chair of the Department of Astronomy. “This is really the beginning of a new revolution in astronomy— using a large amount of data to do fundamental astronomical science. We are developing new techniques that better utilize state-of-the-art computer science methods to analyze galaxies, stars, and many other types of objects.”

The Poetry Of the Dark Energy Survey

Listen here:

The Dark Energy Survey started in 2013 to map dark energy over 5000 square degrees of sky. Writer and poet Amy Catanzano visited Cerro Tololo Inter-American Observatory during the Dark Energy Survey. In this podcast, Amy discusses her work in quantum poetics, her experience with the Dark Energy Survey and shares some of her poetry.

Bio: Rob Sparks is a Science Education Specialist at the National Optical Astronomy Observatory. A lifelong astronomy enthusiast, he earned a B.A. in physics at Grinnell College and his M.S. at Michigan State University. He taught high school physics, math and astronomy for 11 years at schools on St. Croix, Florida and Wisconsin. He spent the 2001-2002 school year working on the Sloan Digital Sky Survey as a recipient of the Fermilab Teacher Fellowship. He spent the summer of 2003 at the National Radio Astronomy Observatory as part of the Research Experience for Teachers. He has been working as a NASA Astrophysics Ambassador since 2002. He was a member of the Galileoscope Working Group for the International Year of Astronomy.

Amy Catanzano is a writer and poet who teaches at Wake Forest University. She works extensively on poetry involving different scientific disciplines and has published three books of poetry

Dark Energy May Be Incompatible With String Theory

Since 1998, telescope observations have indicated that the cosmos is expanding ever-so-slightly faster all the time, implying that the vacuum of empty space must be infused with a dose of gravitationally repulsive “dark energy.”
In addition, it looks like the amount of dark energy infused in empty space stays constant over time (as best anyone can tell).
But the new conjecture asserts that the vacuum energy of the universe must be decreasing.

Paul Steinhardt, a cosmologist at Princeton University and one of Vafa’s co-authors, said that over the next few years, “all eyes should be on” measurements by the Dark Energy Survey, WFIRST and Euclid telescopes of whether the density of dark energy is changing. “If you find it’s not consistent with quintessence,” Steinhardt said, “it means either the swampland idea is wrong, or string theory is wrong, or both are wrong or — something’s wrong.”

The dark-energy deniers

Make no mistake, dark energy – be it the cosmological constant or quintessence – is the leading theory with plenty of observational evidence to support it. The alternatives remain highly controversial. Yet those nagging questions just won’t go away. Upcoming surveys will either solidify dark energy theory’s position further, or produce a surprise by pulling the rug out from under it. With the Dark Energy Survey – an international collaboration using a 570-million-pixel camera called DECam on the Blanco 4 m telescope at the Cerro Tololo Inter-American Observatory in Chile – releasing its first data from a survey of 300 million galaxies, these are exciting times.

“What makes this a really fun field to be in is that I don’t know what the next big step will be,” concludes Riess. “We’re just in the middle of our initial reconnaissance, and I don’t think we should be surprised by surprises.”

Simon Samuroff receives URA Thesis Award for Dark Energy Survey image analysis

The Dark Energy Survey captures images of galaxies billions of light-years away to help our understanding of the evolution of the cosmos. Assessing these galaxies’ properties, such as their size, shape and distance from each other, is a painstaking process, one that involves not only collecting massive amounts of data, but also correcting for potential miscues that challenge the very act of assessing the data.

The Fermilab-led Dark Energy Survey aims to make unprecedented measurements of a phenomenon known as gravitational lensing. Gravity bends light produced by faraway galaxies, so images of galaxies are subtly distorted by the time they reach Earth. The degree of distortion itself can provide information about those galaxies, galaxy clusters and the universe around them. An important step in making accurate measurements of the universe is by successfully isolating these tiny distortions.

Simon Samuroff is the recipient of the 2017 URA Thesis Award, presented annually for outstanding work by a graduate student working at or in collaboration with Fermilab. In his thesis, titled “Systematic Biases in Weak Lensing Cosmology with the Dark Energy Survey,” Samuroff built computer simulations to model the shapes of galaxies captured by the Dark Energy Camera, which was built by Fermilab and is located at an observatory on a Chilean mountaintop. He closely compared thousands of the simulations to actual images to determine the amount by which scientists’ initial estimates of these distortions are incorrect. He singled out miscues so the Dark Energy Camera could make improved measurements and be more sensitive to subtle effects of phenomena such as dark matter.

“The committee was impressed by both the quality of writing and the magnitude of his study — cataloging millions of galaxies or clusters and taking very small effects into account,” said Fermilab scientist Lenny Spiegel, chair of the URA Thesis Award Committee. “His work is invaluable to scientists studying mysteries regarding astrophysics, which may ultimately point the direction for future progress in particle physics.”

One of Samuroff’s major results showed that interactions between the images of neighboring galaxies that overlapped affected scientists’ measurements more severely than they realized. By identifying where and to what degree distortions like this cause inaccuracies, Samuroff helps scientists create a more reliable system of measurement.

KBO could be evidence for a giant planet in the outer solar system

The discovery of a distant Kuiper Belt Object (KBO) with an extremely eccentric orbit could be evidence that a giant planet is waiting to be discovered in the outer solar system.

KBO BP519 was discovered by scientists analyzing data collected by the Dark Energy Survey, which observes a region far above the orbital plane of most of the solar system’s planets as part of a project to measure acceleration of the universe’s expansion.

It orbits the Sun at a tilt of some 54 degrees from the plane of the inner solar system planets’ orbits.

Like several other KBOs found in 2016, which all orbit at the same unique angle to the plane of the inner planets, 2015 BP519’s position suggests it is being influenced by the gravitational pull of a much larger object, sometimes referred to as “Planet X” or “Planet Nine,” which may be shepherding it and the other above KBOs into this strange orbit.

Since the 2016 discovery of these KBOs orbiting at the same distinct angle, scientists have been searching for a hypothesized large planet influencing their orbits, which could be either a super-Earth or a gas giant.

One possibility is 2015 BP519, described as “the most extreme Trans-Neptunian Object discovered to date,” is actually a moon of the large planet, which some astronomers estimate to be ten times as massive as the Earth.

‘Nova Wonders’ Asks ‘What’s the Universe Made Of’ Tonight

When gravitational-wave detectors recorded a distant collision of two neutron stars, astronomers around the world got the call and began to search for visible evidence of the crash. A team in Chile from the Dark Energy Survey — as well as other groups — was able to detect the so-called kilonova’s light, providing the first-ever observations of both light and gravitational waves from the same cosmic explosion.

For the Dark Energy Survey crew, these observations will help gauge the universe’s expansion rate, aiding their investigation into the mysterious dark energy pushing the universe apart.

“What’s the Universe Made Of” digs deep into two cosmic mysteries — dark matter and dark energy — showing how researchers know those entities exist, but also revealing that they are still trying to learn what they’re made of and how they work.

Planet Nine: New evidence strong but not proof

It has been described as hiding in plain sight, a planet 10 times as massive as Earth and orbiting the Sun beyond Neptune. Predicted in a series of studies over the last few years, Planet Nine of the solar system — if it exists — continues to elude, and yet intrigue, with clues suggesting that it is indeed out there.

The latest pointer comes from another object in the outer Solar System, called 2015 BP519. This one is certain: it was discovered during the international project Dark Energy Survey. In a paper on a preprint archive reporting the discovery, a large team of scientists has concluded that 2015 BP519 “adds to the circumstantial evidence for the existence of this proposed new member of the Solar System”.

New evidence suggests there could be a ninth planet in our solar system

Researchers have been on the lookout for “planet nine” since early 2016 when astronomers first spotted a group of objects orbiting at an odd angle well past Neptune.

“It’s not proof that Planet Nine exists,” David Gerdes, an astronomer at the University of Michigan and co-author of the paper, told Quanta Magazine.

“But I would say the presence of an object like this in our solar system bolsters the case for Planet Nine.”

2015 BP519 was found using data from the Dark Energy Survey, an ongoing project investigating the expansion of our universe by looking into deep space.

There’s New Evidence for the Mysterious “Planet Nine”

The story actually starts with another celestial object: 2015 BP519. The team of researchers notes that the object, classified as an “Extreme Trans-Neptunian Object” due to its size and distance from the Sun, has been on the team’s radar since 2014. The massive team of astronomers spent 1,110 days tracking the orbit of 2015 BP519 (which honestly should also be declared a planet or something just so it can be named after a Roman deity and not a bunch of numbers and letters) as part of the Dark Energy Survey Collaboration using a Dark Energy Camera from an observatory in Chile. BP519 caught their attention because it has a weird orbit. Researchers found that 2015 BP519 travels as far as about 450 times the distance between the Sun and Earth, and it also has the most inclined orbit of any known Extreme Trans-Neptunian Object, traveling almost perpendicular to the rest of the planets and objects in our solar system. This strange orbit is an anomaly in the solar system.