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ABSTRACT

In this work we present the galaxy clustering measurements of the two DES lens galaxy sam-
ples: a magnitude-limited sample optimized for the measurement of cosmological parameters,
MaGLiM, and a sample of luminous red galaxies selected with the REDMAGIC algorithm.
MacGLiM / REDMAGIC sample contains over 10 million / 2.5 million galaxies and is divided
into six / five photometric redshift bins spanning the range z € [0.20, 1.05] / z € [0.15,0.90].
Both samples cover 4143 deg® over which we perform our analysis blind, measuring the an-
gular correlation function with a S/N ~ 63 for both samples. In a companion paper (DES
Collaboration et al. 2021), these measurements of galaxy clustering are combined with the
correlation functions of cosmic shear and galaxy-galaxy lensing of each sample to place cos-
mological constraints with a 3X2pt analysis. We conduct a thorough study of the mitigation of
systematic effects caused by the spatially varying survey properties and we correct the mea-
surements to remove artificial clustering signals. We employ several decontamination methods
with different configurations to ensure the robustness of our corrections and to determine the
systematic uncertainty that needs to be considered for the final cosmology analyses. We val-
idate our fiducial methodology using log-normal mocks, showing that our decontamination
procedure induces biases no greater than 0.50 in the (L, b) plane, where b is galaxy bias.
We demonstrate that failure to remove the artificial clustering would introduce strong biases
up to ~ 70 in Q,, and of more than 40 in galaxy bias.

Key words: large-scale structure of the Universe — dark energy — cosmological parameters —
cosmology: observations
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2 DES Collaboration

1 INTRODUCTION 2018; Icaza-Lizaola et al. 2020). These approaches have been re-
ned in recent years as the importance of addressing these spatial
The current Standard Model of CosmologyCDM, provides an  gystematics has grown (Vakili et al. 2020; Weaverdyck & Huterer
excellent t to current observations, including distance measure- 2021 Wagoner et al. 2021), including the development of machine
ments to Type la supernovae (SNla) (Riess et al. 1998; Perlmutter|earning approaches using neural networks Rezaie et al. (2020) or
etal. 1999), the cosmic microwave background (CMB) uctuations  self-organizing maps Johnston et al. (2021). Some approaches have
(Spergel et al. 2003; Planck Collaboration 2020) and the Iarge-scaleoperated only at the level of the power spectrum, including mode
structure of the Universe (Alam et al. 2017; Abbott etal. 2019; Alam projection methods (Rybicki & Press (1992) with examples of ap-
etal. 2021), with only six free parameters. In addition, photometric pjications and further developments shown in Leistedt et al. (2013);
galaxy surveys, such as the Kilo-Degree Survey (KiDS, de Jong | gjstedt & Peiris (2014); Elsner et al. (2016, 2017)). Weaverdyck
etal. 2013), Hyper Suprime-Cam Subaru Strategic Program (HSC- g Huterer (2021) reviewed several of the above techniques and
SSP, Aihara et al. 2018) and the Dark Energy Survey (DES, The ghowed how mode projection methods operating on the pseudo-
Dark Energy Survey Collaboration 2005) are now reaching a level power spectrum are related to multilinear regression methods, iden-
of sensitivity that competes with the most precise determinations tifying residual biases in both approaches.
of cosmological parameters currently available (DES Collaboration We present the methods we apply to DES-Y3 data in order to
2018a; Heymans et al. 2021). The comparison of the measurementsyjtigate these e ects, the full set of validation tests we perform, both
of the late Universe, provided by galaxy surveys, and the early Uni- o data and on simulations, and its nal implementation on the data.
verse, provided by CMB measurements, allows for powerful tests These corrections enable robust measurements of the clustering
of the nature of cosmic acceleration and general relativity. The amplitude of lens galaxies. The results of this analysis are used
precision which photometric surveys are able to reach in the deter- 55 the clustering input for the full 2pt cosmological analysis in
mination of cosmological parameters comes from the combination pgs.y3 (DES Collaboration et al. 2021).
of di erent observables, mainly from weak lensing and clustering This paper is organised as follows: in Section 2 we describe
of galaxies, in the so-called 2pt analysis, whose methodology is  the modeling of the galaxy clustering angular correlation function
described in Krause et al. (2021). used throughout the Y3 analysis. In Section 3, we introduce the
In this work, we present the clustering measurements of the Y3 data and the galaxy samples derived from it. In Section 4,
lens galaxy samples that enter in the DES Year 3 (Y38 (DES we present the description of di erent observing conditions and
Collaboration et al. 2021) and the 2pt (Porredon et al. 2021a; their representation. In Section 5, we present the methodology, with
Pandey et al. 2021; Elvin-Poole, MacCrann et al. 2021; Prat et al. special attention to the decontamination pipeline (subsections 5.3.1
2021, in combination with the shear eld or galaxy-galaxy lens- and 5.3.2). In Section 6, we show the galaxy clustering results after
ing) analyses. The cosmological information is extracted from the applying the correction methods. This correction is validated in
large-scale structure (LSS) measurements using the angular two-Section 7. In Section 8, we discuss the post-unblinding ndings
point correlation function that characterizes the spatial distribution about the amplitude of the angular correlation functions in terms of
of galaxies in tomographic photometric redshift bins. However, the the considered survey properties. Finally, we present the conclusions
measurement of the angular correlation function is a ected by spa- in Section 9.
tially varying survey properties that must be taken into account and
corrected to extract the full cosmological power of DES. These sys-
tematic e ects come from the observing conditions and translate 2 MODELLING

into changes in the selection function across the observed footprint ) ] )
or with redshift. The observed projected galaxy density contv@ggln" of galaxies

in tomography bir8at positionft can be written as

As photometric surveys have become more extended in area, 3

both the impact of these survey properties or observational e ects,

and the diminishing statistical errors, have spurred the development>€4Jbslﬁ0 = 3, {4 X% Mj-j e, X rspM . X 1n°—
of a variety of techniques to correct for them in clustering mea- | {z }

surements. Already in SDSS (Scranton et al. 2002; Myers et al. X8 e

2006) and 2MASS (Maller et al. 2005) cross-correlations with 1)

di erent survey properties and masking were used to check for

possible sources of systematic error, which were deemed to be in-with j the comoving distance, 8 = =§11°31+3j the normalized
signi cant given the statistical errors. Ross et al. (2011) compared selection function of galaxies in tomographic tdrHere the rst
several methodologies (masking, cross-correlation correction andterm is the line-of-sight projection of the three-dimensional galaxy
computing weights for the data) in SDSS-III. The cross-correlation density contrastX?Do; the remaining terms are the contributions
correction method was applied to early DES data (DES-SV) in from linear redshift-space distortions (RSD) and magni catio (
Crocce et al. (2016), and was studied by Elsner et al. (2016) (therewhich are described in Krause et al. (2021).

called template subtraction") who derived its characteristic bias. We model the galaxy density assuming a local, linear galaxy
The application of weights have increasingly become a popular bias model (Fry & Gaztanaga 1993), where the galaxy and matter
method, applied for instance in BOSS (Ross et al. 2017, 2020), density uctuations are related b x° = 1X 1x°, with density
eBOSS (Laurent et al. 2017), DES-SV (Kwan et al. 2017, compar- uctuations de ned by X 1 =1x°® =%«= We model the linear

ing with the cross-correlation method), DES Y1 data (Elvin-Poole galaxy bias to be constant across each tomographic bin, denoted
et al. 2018) and DESI targets (Kitanidis et al. 2020). Rather than as18. The validity of these assumptions to the accuracy of the Y3
applying weights to the observed data, the inverse-weights can be3 2pt analysis is demonstrated in Krause et al. (2021).

applied to the random sample used for correlation function anal- The angular power spectrum consists of six di erent terms,
yses, as shown in Morrison & Hildebrandt (2015) and applied to corresponding to auto- and cross-power spectra of galaxy density,
eBOSS data via a multilinear regression analysis in (Bautista et al. RSD, and magni cation. At the accuracy requirements of the Y3
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3

3 2pt analysis, the commonly-used Limber approximation is in- Management system (Morganson et al. 2018) and, after a complex
su cient to evaluate these terms, and we adopt the non-Limber reduction and vetting procedure, compiled into object catalogues.
algorithm of Fang et al. (2020). For example, the exact expression The catalogue used here amounts to nearly 400 million sources
for the density-density contribution to the angular clustering power (available publicly as Data Releas& DES Collaboration 2018b).

spectrum is We calculate additional metadata in the form of quality ags, sur-
89 2 ' ' 9 vey ags, survey property maps, object classi ers and photometric
XooXeo | —= S 81j1° 3j,, < 2° redshifts to build ther3 GOLData set (Sevilla-Noarbe & Bechtol
£ N etal., 2020).
—: 30/‘561:—j 1—J2°9 1) 1°9 1) 20— 2 From this catalogue, we build the di erent galaxy samples for

large-scale structure studies. For robustness, we decided to use two
with %e:— 11— b° the 3D galaxy power spectrum; the full ex- dierent types of lens galaxiesylagLim and redMaGiC, which
pressions including magni cation and redshift-space distortion are are used as lens samples for galaxy clustering and for combination
given in Fang et al. (2020). Schematically, the integrand in Eq. 2 with weak lensing for the 32pt analysis. These two samples are
is split into the contribution from non-linear evolution, for which  described in the following subsectiorfs.
un-equal time contributions are negligible so that the Limber ap-
proximation is su cient, and the linear-evolution power spectrum,
for which time evolution factorizes.

The angular correlation function is then given by 3.1 Y3MagLim sample

Féo= 24’ 1%1cos\° ?&)bs)%{bsl °— 3) The main lens sample considered in this wakkagLim, is the
¢ result of the optimization carried out in Porredon et al. (2021b).
where% are the Legendre polynomials. The sample is desi'gned to ma_ximize the cosmological cqnstraining
Throughout this paper, we use ti@smoSISframework power of the combined clustering and galaxy-galaxy lensing analy-

(Zuntz et al. 2015) to compute correlation functions, and to infer SIS (8IS0 known as 2pt) keeping the selection criterion as simple
cosmological parameters. The evolution of linear density uctua- &S POSSible. The selection cuts, based on the table columns from
tions is obtained using th@AMB (Lewis & Bridle 2002) modul@ Sevilla-Noarbe & Bechtol et al,, (2020), are:
and then converted to a non-linear matter power spectgm?: °
using the updateHialofit recipe (Takahashi et al. 2012).

We model (and marginalise over) photometric redshift bias un-
certainties as an additive shift 8in the galaxy redshift distribution
=811° for each redshift birg

flags_foreground =0 & flags footprint =1 & bi-
tandflags_badregions ,2)=0 & bitandflags_gold ,126)=0
Star-Galaxy separation witEXTENDED_CLASS_MASH:= SOF

i<4 |phot, 18
:gqo! :gl| [8o_ (4) i>17.5

and a stretch parameter to characterise the uncertainty on the width

e The rst cut is a quality ag to remove badly measured ob-
for some of the tomographic bins and samples,

jects or objects with issues in the processing steps. It also removes
8101 =8 £8y hlivs Hi » ) problematic regions due to astrophysical foregrounds. The second
6 e : cut removes stars from the galaxy sample. The faint magnitude cut

The priors on the 18 andfl 8 nuisance parameters are mea- N the&band depends linearly on the photometric redshift.c,
sured and calibrated directly using the angular cross-correlation and selects bright galaxies. The photometric redshift estimator used
between the DES sample and a spectroscopic sample, as describef@r this sample is the Directional Neighbourhood Fittiig\f- De
in Cawthon et al. (2020). We use the san€andfl 8asin the Y3 Vicente et al. 2016) algorithm (see also Porredon et al. 2021a), in

3x2ptanalysis for all tests of robustness of the parameter constraints Particular its mean estimate using 80 nearest neighbors in colour
as listed in Table 3. and magnitude space, by performing a hyperplane t. The brighter

magnitude cut removes residual stellar contamination from binary
stars and other bright objects.

We split the sample into six tomographic lens bins, with bin
edgegphot = »0°20-0+40-0:55-0-70-0-85-0:95-1-05 /4 These edges
The Dark Energy Survey collected imaging data with the Dark have been slightly modi ed with respect to Porredon et al. (2021b)
Energy Camera (DECam; Flaugher et al. 2015) mounted on the in order to improve the photometric redshift calibration (De Vicente
Blanco 4m telescope at the Cerro Tololo Inter-American Obser- et al. 2016). We refer the reader to Porredon et al. (2021b) for more
vatory (CTIO) in Chile during six years, from 2013 to 2019. The details about the optimization of this sample and its comparison with
observed sky area covers 5000ded in ve broadband lters, redMaGiC and other ux-limited samples. The main properties of
6A8I., covering near infrared and visible wavelengths. This work the sample are summarized at the top panel of Table 1.
uses data from the the rst three years (from August 2013 to Febru-
ary 2016), with approximately four overlapping exposures over the
full wide- eld area, reaching a limiting magnitude 8f 233 for

S/N =10 point sources. The data were processed by the DES Data
4 https://des.ncsa.illinois.edu/releases/drl ;

5 Moreover, fromY3 GOLDwe also de ne theBAO SAMPLE& galaxy

3 DATA

1 https://github.com/xfangcosmo/FFTLog-and-beyond sample especially de ned for studies on the baryonic acoustic oscillation
2 https://bitbucket.org/joezuntz/cosmosis scales (Carnero Rosell et al. 2021), that is not used here, but undergoes an
3 http://camb.info analogous treatment of its spatial systematics.
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MagLim
Redshift bin #e hrsi 18\ »arcmirva
0:220Y | Y 0440 2236462 0.150 1.5 33.88
0:40Y | Y 055 1599487 0.107 1.8 24.35
055Y 1Y 070 1627408 0.109 1.8 17.41
0s70Y 1 Y 085 2175171 0.146 1.9 14.49
085Y 1Y 095 1583679 0.106 2.3 12.88
0:95Y | Y 105 1494243 0.100 2.3 12.06
redMaGiC
Redshift bin #e hegi 18 \j »arcmirva
015V 1Y 035 330243 0.022 1.7 39.23
035Y1Y 050 571551 0.038 1.7 24.75
050Y 1Y 065 872611 0.059 1.7 19.66
065Y 1Y 080 442302 0.030 2.0 15.62
080Y 1Y 090 377329 0.025 2.0 12.40

Table 1.MagLim (top table) andedMaGiC (bottom table) characterisation
parameters: number of galaxidis; , and number densityig i, blind galaxy

3.3 Angular Mask

The total sky area covered by ti& GOLDatalogue footprint is
4946 ded. We then mask regions where astrophysical foregrounds
(bright stars or large nearby galaxies) are present, or where there
are known processing problems ("bad regions"), reducing the total
area by65968 ded (Sevilla-Noarbe & Bechtol et al., 2020). The
angular mask is de ned asHEALPIx® (Gorski et al. 2005) map

of resolution# gjge = 4096 Pixels with fractional coverage smaller
than 80% are removed. In addition, we require homogeneous depth
across the footprint for both galaxy samples, removing too shallow
or incomplete regions. As a summary, we use the followrgy
GOLand redMaGiC speci ¢ map quantities to de ne the nal
common area:

footprint = 1
foregrounds = 0
badregions 1
fracdet > 0.8
depth8band 22:2
I MAX -highdens 0°65
I MAX -highum ~ 0°95

where the depth for th@band magnitude is obtained using the SOF
photometry (detailed in Sevilla-Noarbe & Bechtol et al., 2020)
(as used iMMagLim) and the conditions on ZMAX are inherited

bias, 18 and scales excluded per redshift bin. The number densities are in from theredMaGiC redshift span. The nal analysed sky area is

units ofarcmin 2 and the scales excluded correspond tdi& for both

4143 deg.

samples, as described in Krause et al. (2021). The blind galaxy bias values

correspond to the ducial values that were assumed to create the log-normal

mocks used in this analysis, not the best- t values fron2ft.

3.2 Y3redMaGiC sample

4 SURVEY PROPERTIES
4.1 Survey property (SP) maps

Through their impact on the galaxy selection function, survey prop-
erties can modify the observed galaxy density eld. In order to

TheredMaGiC algorithm selects luminous red galaxies (LRGS) correct these e ects, we develop spatial templates for potential con-
according to the magnitude-colour-redshift relation of red sequence taminants by creatingdEALPix sky maps of survey properties
galaxy clusters, calibrated using an overlapping spectroscopic sam-{"SP maps"), which we then use to characterize and remove con-

ple. This sample is de ned by an input threshold luminosityin
and constant co-moving density. The feldMaGIiC algorithm
is described in Rozo, Ryko et al. (2016)edMaGicC is the algo-
rithm used for the ducial clustering sample of the DES Y12pt

tamination from the observed density elds (see Leistedt et al.
2016, for the details of the original implementation of this mapping
in DES). Each pixel of a given SP map corresponds to a summary
statistic that characterises the distribution of values of the measured

cosmology analyses (DES Collaboration 2018a; Elvin-Poole et al. quantity over multiple observations. Table 2 summarizes the sur-
2018), with some updates improving the redshift estimates and se-vey properties considered in this analysis along with the summary

lection uniformity, besides the usage of new photometry fid8n
GOLD

We de ne the Y3redMaGiC sample in ve tomographic
lens bins, selected on theedMaGiC redshift point estimate
quantity zredmagic. The bin edges used argedmacic =
»0015-0435-0°50-065-0-80-090%2 The rst three bins use a lumi-
nosity threshold of min i 05! and are known as the high density

sample. The last two redshift bins use a luminosity threshold of

I'mini 10! and are known as the high luminosity sample.
TheredMaGiC selection also includes the following cuts on
guantities from th&/3 GOLPBatalogue andedMaGiC calibration,

Removed objects witRLAGS_GOLD8|16|32|64
Star galaxy separation WitEXTENDED_CLASS_MASH_ZOF
Cut on the red-sequence goodness af &Y j 2,,,21°

statistics used to produce the SP maps. As foreground sources of
contamination we use a star map created with bright DES point
sources, labeledtellar_dens and the interstellar extinction map
from Schlegel et al. (19985fd98 7. More detailed information on

the construction of these maps can be found in Sevilla-Noarbe &
Bechtol et al., (2020). Hereafter we will use SP map to refer to
survey property and foreground maps generically.

4.2 Reduced PCA map basis

The Y1 analysis used 21 SP maps selected a priori. However, a
reduced set of SP maps is equivalent to setting a hard prior of no

6 https://healpix.sourceforge.io
7 We have veri ed that substituting the DES point sources map with the

The main properties of t.he sample are summarized in the bot- Gaja EDR3 star map (Gaia Collaboration (2020)) andsfd®8 map with
tom part of Table 1. See Sevilla-Noarbe & Bechtol et al., (2020) for the Planck 2013 thermal dust emission map (Planck Collaboration (2014))

further details on these quantities.

has no signi cant impact on the results.

MNRAS 000, 1 22 (2021)



5

Quantity Units Statistics real LSS signal from over tting. We test the impact of adjusting the
airmass ; WMEAN, MIN, MAX number of PC maps used in _Section 8 anql in App. D, nding thatthe
full set of 107 maps results in galaxy weights that overcorrect and
fwhm arcsec WMEAN, MIN, MAX correlate signi cantly with LSS. The ducial set of maps employed
fwhm_ uxrad arcsec WMEAN, MIN, MAX to decontaminate_ the_ data are t_hese rst 50 PC maps, althoug_h we
have also run validation tests with the STD maps, as we explain in
exptime seconds SUM the next sections.
te ; WMEAN, MIN, MAX
te_exptime seconds SUM 5 ANALYSIS TOOLS AND METHODOLOGY
skybrite electrons/CCD pixel WMEAN

5.1 Clustering Estimator

skyvar (electron s/CCD pixef)  WMEAN, MIN, MAX The analysis of the galaxy clustering is performed by measuring the

skyvar_sqrt electrons/CCD pixel WMEAN angular 2-point correlation functiok,*\ °, in photometric redshift
bins. In this analysis we work witHEALPix (Gorski et al. 2005)
maps of the SPs and galaxy density from log-normal mock cata-
sigma_mag_zero mag QSUM logues. The decontamination methods generlEALPix weight
maps as well. Weights are actually obtained for each SP pixel, so
we also work with pixelised versions of our galaxy samples, and
maglim mag use a pixel-based version of the Landy-Szalay estimator (Landy &
Szalay 1993), following the notation of Crocce et al. (2016):

skyvar_uncertainty electrons/ s coadd pixel

fgecm_gry mag WMEAN, MIN

sof_depth mag
ielckielc 1o #O 14 #0
magauto_depth mag B1\0 = 8 — 9 . ©)
stars_1620 # stars &1 %1
stellar_dens starstied? where#g is the galaxy number density in pix8l# is the mean
galaxy number density over all pixels within the footprint angl- 9
sfd98 mag

is a top-hat function which is equal tbwhen pixels8and 9 are
separated by an anghle within the bin size \. The fractional
coverage of each pixel is taken into account in the calculatighgof

Table 2. Survey properties used for the systematics mitigation e ort of the

DES Y3 Key Project, along with the|_r phys_lcal units and the statistics used nd# . These correlation functions are calculated udireeCorr 8
to generate SP maps from the stacking of images. As foreground sources o

contamination we use a DES bright stars map and the dust extinction map(l‘andy & Szalgy tre). We verify On_the data that the _d' erence
from Schlegel et al. (1998). We use both the raw number count of DES point P€tween this pixel version of the estimator and that using random
sourcesstars_1620and the densitystellar_densWe use an SP map for ~ POints is negligible for the angular scales we consider.

each statistic in each photometric band 6 A— 8-g (with the exception of

stars_162Q stellar_densandsfd9§, resulting in 107 total SP maps.
5.2 Log-normal mocks

We rely on a set of log-normal mock realisations of the observed
contamination from those SP maps that are unused, so we should b@jata to evaluate the signi cance of the correlation between data and
carefulto not discard spatial templates that carry unique information gp maps following the methodology of Elvin-Poole et al. (2018)
about potential systematics (Weaverdyck & Huterer 2021). For Y3 and Xavier et al. (2016). For each of our galaxy samples we create
we have initially increased the number of SP maps considered t0 5 set off 000mocks that matches their mean galaxy number density
107. By expanding the library of SP maps used for cleaning, we anq power spectrum. We generate full sky mock catalogues at a
relax the implicit priors and adopt a more data-driven approach to HEALPix resolution of# gige = 512 corresponding to 011 de-
cleaning observational systematics from the clustering data. grees pixels. We then apply the DES-Y3 angular mask. This angular

Many of the Y3 additional SP maps we use are alternative resplution is small enough to be used for the scales employed in the
summary statistics for characterising the observed quantity, such ascosmology analysis. The usage of these mocks is covered in Section
MIN and MAX instead of the weighted mean (WMEAN), which 531 we also create sets of contaminated log-normal mocks that
results in a high correlation between SP maps. We therefore creatgye |ater use to validate our decontamination methods. These mocks
an orthogonal set of SP maps by using the principal components ofincorporate the e ect of SP maps observed on the data. Appendix
the pixel covariance matrix across all 107 SP maps (standardiseda contains more details about their creation and contamination.
to zero mean and unit variance)#g;qe = 4096 This provides an

orthornormal basis set of SP maps that can be ordered according

to the total variance they capture in the space spanned by the 107.3 Correction methods
SP maps. We will refer to these principal component maps as PC
maps to di erentiate from SP maps in the standard (STD) basis,
where each map represents a single survey property é=@ime.

From this point forward, we will use SP map to more generically
refer to maps that may be in either the PC or STD basis. We retain
the rst 50 PC maps, which account for 98% of the variance

of the full 107 map basis. This allows us to capture the dominant
features of the additional maps while reducing the risk of removing 8 https://rmjarvis.github.io/TreeCorr

The observed galaxy sample has contamination from observing
conditions and foregrounds, which modify the selection function
across the survey footprint. Our goal is to correct these e ects in
the lens galaxy samples. To do so, we create a set of weights to
apply to the galaxy samples, constructed from a list of SP maps.

MNRAS 000, 1 22 (2021)



6 DES Collaboration

The weighted sample is then used for measurememi$\¢fand for into ten equal sky areas for each PC map and estimate a covariance
combination with weak lensing measurements (DES Collaboration matrix for the 1D relation bin means of that PC map using the
et al. (2021), Porredon et al. (2021a), Pandey et al. (2021), Elvin- set of 1000 uncontaminated mocks described in Sec.5.2. Since the
Poole et al. (2021)). This approach has been successfully appliedbins are de ned as equal area, the statistical error associated with
to the angular correlation function of the DES Year 1 clustering each bin is similar and no one region dominates the t. We use
measurements (Elvin-Poole et al. 2018), as well as in SDSS-1II (for this covariance matrix for determining the best- t parameters of
example, in Ross et al. 2011, 2017), eBOSS (Laurent et al. 2017;a function to approximate the 1D relation, as well as to assess its
Bautista et al. 2018; Icaza-Lizaola et al. 2020; Ross et al. 2020; goodness-of- t.

Raichoor et al. 2021) and in KiDS (Vakili et al. 2020). We tthe 1D relation to a linear function of the PC map values
Most correction procedures can be interpreted as regression
methods, with the true overdensity eld corresponding to the resid- =oi
uals after regressing the observed density eld against a set of SP heyi

maps. Adding SP maps is equivalent to adding additional explana—b L, . 5 )
y minimizing j <, which we then denotg The index8runs

tory variables to the regression, which increases the chance of over- h ) il model h ¢
tting. Such over tting will reduce the magnitude of the inferred over the PC map bins. Similarly, we compute the goodness-of- t

overdensity eld (i.e. shrink the size of regression residuals), and for the case where+h=-i is a constant functio®'® = 1 labeled

2 . . —_oh= . . . .
thus over tting will generically lead to a reduced clustering signal. J nup- Finding that=-<h=>i ts well to this constant function is

There are several approaches to address this. One pdori equivalent to nding that this particular PC has no impact on the
. . 2 .
restrict the number of SP maps to reduce the level of false correction.galaxy density eld. To calculate both® de nitions, we make use

Thisis equivalent to asserting that there is no contamination from the ©f the (L0 10) covariance matrix obtained from the log-normal

discarded SP maps, which risks biasing the data from unaccounted-mOCkS' . . )
The degree ofimpact of a given PC map on the data is evaluated

for systematic e ects. A second option is to clean with all of the
SP maps and then debias the measured clustering based on aHs'ng

estimate of the expected level of false correction (e.g. pseudo- j 2 - j r2]u” j rznode|° (8)
mode projection, Elsner et al. 2016, 2017; Alonso et al. 2019). . o . o o

This approach can be interpreted as a simultaneous ordinary least 10 decide whether this impact s statistically signi cant or not,
squares regression with a step to debias the power spectrum. Map'Ve run the exact same procedure described abov&000 log-
level weights that may enter in the analysis of other observables, "ormal mock rggllsatlons. In t_h'zs way, we obtain the probability
such as galaxy-galaxy lensing, can be produced from this approachdistribution of j . We de ne j “168” as the value below which
but they will be overly-aggressive if the number of SP maps is large. 8r€68%of the | 2 values from the mocks. Then, we consider an
Wagoner et al. (2021) extend this approach by incorporating the SP map signi cant if

pixel covariance and using Markov Chain Monte Carlo to include i 2

map-level error estimates, but this again becomes less feasible ifthel1 = 2w i)1 - 9)
number of SP maps is too large. Finally, one can take an approach
between these extremes, reducing the number of SP maps usedhere) 1 is a signi cance threshold that is xed beforehand. The
for tt|ng, but doing SO in a data-driven manner. We app|y two Square-l’OOt of this quotient is proportional to the Signi cance in
di erent methods that take this third approach. They make di erent terms off .

assumptions, but were both found to perform well in simulated tests After identifying the most contaminating mai, the next step

in Weaverdyck & Huterer (2021). The SP maps we run these two is to obtain a weights majs,_gto correct its impact. We compute
methods on is our ducial set of 50 PC maps that we introduced in this weights map as

Section 4. In addition, we present a third method that we use to test 1

linearity assumptions made by the other two. Fe-& T.Bo - (10)

=< B, 2- @)

where 1B is a linear function ofs with which its 1D relation
5.3.1 lterative Systematics Decontaminatit®i}) is tted. In general, this function depends on the nature of the SP
map, although the aim is to use functions as simple as possible to
prevent over tting. In the case of PC maps, we nd no signi cant
deviations from linearity in the 1D relations (see Appendix E).
After obtaining the weight map, the pipeline normalises it to

- e . . ? |
ISD is organised as a pipeline that corrects the PC map (or FE}, 1. Then, itis applied to the data, in such a way m%i '

any generic SP map) e ects by means of an iterative process whose? go: F&. where? is an index that runs over the footprint pixels

steps can be summarized as i) identify the most signi cant PC map, at#sjge = 4096 The process is repeated iteratively, identifying at
i) obtain a weight map from it, iii) apply it to the data and iv) go  each iteration the most signi cant PC map and correcting for it until
back to i). The algorithm stops when there are no more maps with anall the PC maps have a signi cance lower than . At iteration§

e ect larger than an a priori xed threshold. Each step is described the weights from iterations 1 &have been applied. Figure 1 shows

In this subsection, we describe the ducial correction method that
we use for DES Y3, called Iterative Systematics Decontamination
(ISD). It is an extension of the methodology applied in Y1 (Elvin-
Poole et al. 2018).

in more detail in the following lines. the 1D relation of a given PC map that has been identied as a
To begin with, we degrade each PC map#tgqe= 512 and signi cant contaminant (dots) and after correcting for it (triangles).
then we compute the relation between their valuesanti=si , The weights associated to each signi cant PC map are incor-

where=s is the observed density of galaxies at a given part of the porated multiplicatively to the total weight map) , that is

sky andhsi is the average density over the full footprint. In the

following we refer to this as the 1D relation. To obtain the statistical Fy = Fo_s (11)
signi cance of the observed correlations, we bin the 1D relation a1
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regularizing terms act as components of a mixed, zero-centered
prior on the elements df. The mixture consists of a Laplace and
Gaussian distribution, with their precisions controlled_lkyyand
_». The Laplace component is sharply peaked at zero, encouraging
sparsity in the coe cients. We determine the values @fand_» by
minimizing the mean squared error of the predictions on held-out
portions of the footprint via 5-fold cross-validation. This allows the
data to pick the precision and form of the prior based on predictive
power.
We use thescikit-learn (Pedregosa et al. 2011) imple-
mentation of ElasticNetCV , with a hyperparameter space of
_1°1 1, _2° 2 f0e1-05-0-9gand 20 values of 1, _»° spanning
four orders of magnitude (automatically determined from the input
data). We degrade all maps #Qjqe = 512 and compute Eq. (12)
using atraining maskthat only includes pixels wittye; 01 (de-
tection fraction from ther3 GOLBTD maps which is inherited by
the PC maps). We performed many subsequent tests changing the
Figure 1. Example of how lterative Systematics Decontamination (ISD) de nition of this training mask, with little observed impact on the
\(Nolrkts_. V\t/etirlllustrate this kt)r): th(ﬁv]\clin% thet)obse:cvedtpixelfnugﬁé)er den_sil}ll nal F1\°. UsingENet on the STD maps we also extendgtb in-
relative to the mean over the full footprint) as a function of a PC map pixe :
value, evaluated in ten equal area bir?s. We refer to this as 1D relati?)r?. TheCIUde quadratic terms of forr%, and_/or_ terms of forni&Beliargens
but these showed decreased predictive power on held-out samples,

method identi es the PC mapca8 as the most signi cant one at iteration . . . ;.
(i.e., no weights have been applied yet) at the rst redshift biMagLim. suggesting that the risk of over tting from these additional maps

The corresponding 1D relation is depicted by the red triangles and the red d0Minates over additional contamination they identify.

line corresponds to their best t linear function. After correcting for the The total weight map is computed (still &tjge = 512) as
contaminating template with weights (given by equation 10) at iterdtjon

the impact ofgthis IgC map on th% dat(g is hig)r:ch:educed. ‘I)'he bluznpoints F)ENet => EN9tlsO%1 =1, S & (14)

and their best t linear function (blue line) show that the 1D relation is now The ISD andENet methods make di erent assumptions and
compatible with no e ect. take signi cantly di erent approaches to select important SP maps
while minimizing the impact of overcorrectioENet neglects the
covariance of pixels, as well as the di ering clustering properties
of the SP maps, but it is less dependent on the basis of SP maps
than isISD. It avoids some of the di culties thdSD method has
when SP maps are highly correlated or contamination is distributed
weakly across a combination of many maps, and hence missed by
1D marginal projections. We therefore expect Ei¢et method to

be a useful robustness test of the dudi@D method, and it is also
used to estimate the systematic contribution toRRe® covariance

5.3.2 Elastic NetENet) (see Sec. 6).

where8runs over the number of PC maps it is necessary to weight
for. Fy is then the total weight map that contains the information
about the individual contaminants. These are the weights we apply
to the data to mitigate the contamination. This total weight map is
also normalised so its mean value over the full footprint is one. The
pipeline runs this procedure for each redshift bin independently.

We also generated sets of weights using the Elastic Nief) . .
method described in Weaverdyck & Huterer (2021) on the list of 5.3.3 Neural net weights (NN-weights)

50 PC maps. In this work, ENet has been used to perform robust- 14 eyajuate the robustness of the assumptions made and codes used
ness tests. Recall that th8D method estimates contamination i, nroducing galaxy-density weights, we created a third alternative
via a series of 1D regressions which are used to construct a totaly5cess with di erent choices and independent code in particular,
weight map via Eq. 11. In contragENet estimates the amplitude 5,30 doning the assumption that the mean galaxy density is a linear
of contamination for all PC maps simultaneously, by maximizing 4 noynomial function of all SP maps. The basic principle remains
the following log-posterior ovel: the same, namely that a functi€is® of the vectors of SP values is
pip/ LIJX) U2 Ui =2iiUi2e (12) found which maximizes the uniformity of the observed catalogue.
2# pix bs Iz ¥ 2 192 In this case, however, the function is realized by a neural network

(NN), in a manner very similar to that of Rezaie et al. (2020).

In contrast tdSD andENet, we apply this method on the STD
basis of maps. In addition, two important changes to the weighting

whereUgis the contamination amplitude for PC mBpSis a matrix
with the pixelated PC maps as colurfinand

Rletj# 9 procedure were made to avoid having the NN overtrain, in the sense
Xobs-9% .~ — 1= (13) of absorbing true cosmological density uctuations into the obser-
9 Retj# & # pix vational density factoFe First, the input STD maps were limited

where Gieq; is the fraction of pixel9that is not masked. The rst to those which should in principle fully describe the characteris-

term in equation 12 corresponds to the standard Gaussian likelihoogticS Of the coadd images: tHfehm skyvar_uncertaintyexptime
that is maximized for an ordinary least squares regression. The@ndfgcm_gryexposure-averaged values for each ofgA& bands,
the sfd98 extinction estimate, andgaia_densityestimate of local

stellar density constructed from Gaia EDR3 (Gaia Collaboration
9 In practice, we standardise PC maps to have mean 0 and unit standard2020). We con rm that weights constructed with these STD maps
deviation before computing Eq. (12). eliminate any correlation of galaxy density airmass or depth
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and additionally nd thafgcm_gryhas no signi cant e ect, so itis

the discussion of this important result from the point of view of ob-

dropped, leaving 14 STD maps. The second major change to avoidservational systematics to Section 8. We note also thafléglim

overtraining is to institute# -fold cross-validation: the footprint is
divided into healpixels a# sjge = 16, which are randomly divided
into # distinct folds. The weights for each fold are determined by
training the NN on the othet 1 folds, halting the training when
the loss function for the target fold stops improving. We fise 3¢

The weights are created on a healpixelizatio# gt = 4096
With =g- p-andF gbeing the galaxy counts, useful-area fraction, and
weight estimate for each healpixel, the NN is trained to minimize
the binary cross-entropy

O o]

( log="%Fs,
=gj 0

logtl
=5=0

=5Fg. (15)

In a further departure from the standard weighting scheme, we
take the input vectos to be the logarithm of each input STD map
(except forsfd98 which is already a logarithmic quantity), then
linearly rescale each dimension to have its 1 99 percentile range
spant0-1°. We mask the¥ 1% of survey area for which any such
rescaled SP hag outside the rangé 0<5-1<5°-knowing that the
NN will fail to train properly on rare values of STD maps.

Using the Keras softwat8, we de ne the weight function for
a given galaxy bin as

logFisL =" s, ## 1P (16)

where" de nes a nominal power-law relationship between the STD
maps and the expected galaxy density, @i is a three-layer
perceptron describing deviations from pure power-law behavior.
The training of all folds for all redshift bins can be done overnight
on a single compute node.

6 RESULTS

ISD returns a list of maps with signi cant impact on galaxy clus-
tering and that we need to weight for in each redshift bin of the

we depict two best t correlation functions: the best t model from
3 2pt analysis using its six redshift bins (dashed black lines) and
excluding its last two bins (solid black lines). The DES ducial
constraints are obtained without the last two bins, as explained in
Porredon et al. (2021a). The shaded regions in this gure depict the
scales excluded (see Table 1) from our data vectors. These regions
are not used to obtain constraints on cosmological parameters. The
uncorrected=1*\° are shown as red crosses. We note that the im-
pact of systematic corrections is easily larger than the statistical
uncertainty in the measurements, and are therefore necessary for
unbiased cosmological inference, as we will illustrate below. These
corrections are more important at higher redshift bins in both galaxy
samples. For a comparison of this correction with respect to DES
Y1 galaxy clustering, see Elvin-Poole et al. (2018).

In Figure 3, we explicitly demonstrate the importance of our
systematics correction by placing constraints enand the cluster-
ing biases18 from the galaxy clustering correlation function alone.
We do this by tting the theory model presented in Section 2 to
the data usingosmoSISand thePolyChord sampling software
(Handley et al. 2015a,b). The covariance that we employ is given by
CosmolLike (Krause & Ei er 2017) and it includes the systematic
contributions that we introduce in Section 8.4. We again marginalise
over shifts in the photometric redshift distributions and over their
widths. These nuisance parameters are sensitive to the clustering
amplitude. ForedMaGiC the rest of the cosmological parameters
are xedtothe DES Y3 ducial best t cosmology and féfagLim
these are xed to the best t cosmology using the six redshift bins.
For this reason, this constraint orx should not be taken as a true
constraint, but this illustrates how the changes in the measuiet
can impact cosmology constraints. The priors for these cosmologi-
cal and nuisance parameters are given in Table 3. We obtain these
contours for the unweighted an8D-weighted data. As evidence
of robustness of our choice of SP maps, we also show contours for
another con guration ofiSD (ISD-STD34), where only 34 STD
maps are considered (see Section 8.1 and Appendix B of Carnero

samples. We studied the impact of observing conditions at three rose| et al. (2021) for more details on this selection of SP maps).

di erent signi cance threshold valueg,; = 2-4-9. Increasing
this threshold is equivalent to relaxing the strictness of the decon-
tamination, decreasing the number of signi cant SP maps. After
testing for over and undercorrection on mocks, the ducial choice
of signi cance threshold i$; = 2 (see Sections 7 and 8 for more
details).

We nd that, in general, both samples show a similar trend and
they are more impacted by observing conditions at higher redshift.
Generally, more SP maps are signi cant for thkagLim sample
than forredMaGiC. The measured angular 2pt correlation func-

tions on the weighted samples can be seen in Figure 2. The S/N

11 of this detection is 63 for both samples (using only the rst
four bins ofMagLim). The data have been corrected for systematic
contamination by applying thiSD-PC<50 weights. After the cor-
rection they are in good agreement (green points) with the best t
cosmology from 32pt. The deviation in the rst redshift bin for
redMaGiC is known to come from an inconsistency between clus-
tering results and galaxy-galaxy lensing in this sample. We defer

10 https://keras.io
1F model"\ °

1o’

F data" ©

F moder*\ ° 1F model
where is the F 1\ © part of the covariance matrix arfémogelt\ © is the

best t model from 3 2pt.

11 The signal-to-noise is de ned age#

We see that failure to apply our systematic corrections biases the
inferred bias values as well as the recovered matter density relative
to our ducial choice. The corrections for the tw8D con gura-

tions are equivalent within the statistical uncertainty. In Figure 3,
we focus on the redshift bins with the most prominent di erence in
the mean of the posteriors from uncorrected (red contours) and cor-
rected data (blue contours). We nB10f and6+96f dierences
in13and <, respectively, foMagLim. In the case ofedMaGiC,

we nd 7+69f and6s79f dierencesin1*and <. The e ect of

not correcting is to shift the contours towards higher galaxy biases
and lower < values. This highlights the importance of correcting
systematic e ects.

7 WEIGHTS VALIDATION

We validate our methodology on simulated catalogues to ensure
that no biases are induced. We use unaltered log-normal mocks and
also mocks that are arti cially contaminated by our SP maps (see
Appendix A for details on how we apply this contamination). We
contaminate these mocks by applying the inverse of the weights
determined from the data usitigNet on the full list of 107 STD
maps. Decontamination, however, is performed using weights de-
termined bylSD-PC<50. This procedure adds an additional layer

MNRAS 000, 1 22 (2021)



Figure 2. DES Y3 galaxy clustering results fdagLim (top panel) andedMaGiC (bottom panel). The green points correspond to the angular correlation
function of thelSD-PC<50 weighted data, while the red points correspond to the uncorrected data. The solid black line shows the best- t theory prediction
from the DES Y3 32pt CDM results of each sample (DES Collaboration et al. 2021). Note thaflégLim we also show the best- t from the analysis
including all six redshift bins (dashed black line), although the ducia@t cosmology results from this sample only include its rst four bins. The shaded
regions correspond to the scales that are excluded for cosmological constraints.

of protection: if we contaminate mocks with the weights from one 7.1 False correction test

method and decontaminate by the same method, the test is onIySince we consider a large number of SP mans in this analvsis
checking sensitivity to forms of contamination to which apriori - ge nu P ySIS,

) I - ... chance correlations between the data and some of these maps could
know the method is sensitive to. Generating an equally plausible

realization of contamination from an alternative method adds the 2''S€: €Ven after reducing our number of SP maps. This is more

bene t of potentially revealing blind spots in the method that is important when using a strict signi cance threshold. These purely
being validated random correlations could cause overcorrections, therefore biasing

We calculateF «.2\0 and Frd\0 as the mean correlation the measured value &\ ° and the inferred cosmological parame-
dec unc

. . . ters. To characterise this e ect, we ri8D with); =2 on a set
functlpn OMQO decontaminated and 400 uncontamlnateg mocks, "®"of 400 uncontaminated mocks and then we obtain their correlation
spgctlvely. Since the Iog-norma_l mocks are generat#giag =512 functions,F) .. The false correction bias is de ned as
which corresponds to separation angles 08+9 arcmin between F-uncd
pixels, we compute the correlation functions at the 14 ducial angu-
lar scales that are larger than this limit. Then we estimate the impact _y, no_ 1 @ P 10 ¢ Fooa o2 18
of the di erent biases (see next two Sections)eH © by means of fecebias © T 400 F-uncd unc "\ °®— (18)
the true mean in uncontaminated modkgnct\ °: «&1 &1 -

whereF yncj are the correlation functions measured on the unal-
tered uncontaminated mocks.

In general, the e ect of removing the systematic e ects is to
diminish the amplitude oF 1\ °. Thus, a negative value of this es-
timator indicates overcorrection. In Figure 4 we show the results
of F}}C.biasl\"-f for)1 =2, wheref is the diagonal of the un-

The covariance matrix, , is the galaxy clustering part of the ana- modi ed covariance matrix. We nd a very marginal indication of
lytical covariance given bosmoLike and it is also used for the  overcorrection, always well below the statistical error. We also note
clustering part of the 32pt cosmological analysis. If we nd that thatthis ratio has small angular dependence, as can be seenin Figure
any bias causes a change in the joint t to all redshift bins according 5 which compares the mean tr&€é\ ° (black line) with the mean

to the de nition above, equivalent tp? | 3, then we marginalise of the decontaminated correlation functions (blue line). Therefore,
over this bias in our nal analysis. This threshold was chosen such we do not consider any contribution from the false correction bias
that the impact o 2 would be a small compared to the expected to the nal covariance matrix. The small impact of this e ect on
width of thej 2 distribution of theF 1\ ° data vector. As we detail  the cosmological parameters is highlighted in Section 7.3. Never-
in Section 8.4, we marginalise over biases by modifying the covari- theless, we note that the error bars shown in Figure 5 correspond
ance matrix to account for these sources of systematic uncertainty.to the diagonal of the covariance matrix which has been modi ed
The ducial covariance matrix for DES Y3 2pt analysis includes  to account for systematic uncertainties, as it is explained in Section
these systematic terms. 8.4.

j 2= Fgect\® Funct 0o~ ! Fgect\® Funct\®®e (17)
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Figure 3. Constraints on < and galaxy bias before and after applying our
weighting methodology to the data fdtagLim (top panel) andedMaGiC
(bottom panel). We focus on the redshift bins where the di erence in the

MagLim

Redshift bin

f

0-20Y I Y 0-40

(-0.009,0.007)

(0.975,0.062)

040Y | Y 055

(-0.035,0.011)

(1.306,0.093)

055V 1 ¥ 070  (-0.005,0.006)  (0.87,0.054)
070V I ¥ 0-85 (-0.007,0.006) (0.918,0.051)
085V 1Y 0-95 (0.002,0.007)  (1.08,0.067)

095Y 1Y 105

(0.002, 0.008)

(0.845,0.073)

redMaGiC
Redshift bin | f
015Y 1Y 035 (0.006,0.004) xed to 1
035Y 1Y 050 (0.001,0.003) xedto 1
050Y 1Y 065  (0.006,0.004) xed to 1
065Y | Y 080 (-0.002,0.005) xedto 1
0-80Y I'Y 0090 (-0.007,0.010)  (1.23,0.054)
Both samples
18
All redshifts [0.1,0.9] [0.8,3.0]

Table 3. List of prior values used to constrain- and the sample galaxy
biases18 per redshift bin. The other cosmological parameters have been
xed to the tvalues in the 3 2pt analysis as described in the text. Square
brackets denote a at prior, while parentheses denote a Gaussian prior of
the formN1"—f © The shift | and stretchf | parameters are de ned in
Egs. (4,5). In some cases the latter is not marginalised over ( xed). The
redshift priors were determined in Cawthon et al. (2020).

We de ne the residual systematic bias as

F)l 1\0_

a
ressbias 400 Funci™ °®-

«&1 o1 -

(19)

where theFLéc_‘. are the correlation functions measured on mocks
that have had systematic contamination added and then have been
decontaminated usin&D.

Because we are interested in the levetesidualsystematics
that are insu ciently captured by the weighting method, we use the

mean posteriors of these parameters from contaminated (red contours) andyjternative methodENet with all 107 maps in the standard basis
decontaminated (lled blue contours) data is the greatest. The absence ofqg generate an aggressive level of contamination. We observe that
correction strongly biases our estimations. We also show constraints for bothISD-PC107 and&ENet-STD107 signi cantly overcorrect at the

ISD-STD34 weighted data (orange contours). We obtain similar behaviours
for the rest of the redshift bins of both samples.

7.2 Residual systematic test

Here we demonstrate thE8D e ectively recovers the true corre-
lation function from a contaminated sample. We can then verify if
our approach (with1 = 2) meets the requirements for the Y3

lowest redshift bins of both galaxy samples (see Section 8), so when
using the corresponding weights to contaminate the mocks we are
introducing excessive contamination. Therefore, we expect some
degree of undercorrection when later runnip with a sub-set
of PC maps such as wilsD-PC<50. Furthermore, by usirigNet
to estimate the contamination instead 18D, the contaminated
mocks will include possible contamination modes to whittiet
is sensitive but to whicSD may not be.

In Figure 6, we show the results for this bias with respect to the
diagonal of the unaltered analytical errors. While the highest redshift

cosmology analysis or whether it is necessary to account for any bins of bothMagLim andredMaGiC present moderate levels of

bias due to uncorrected contamination.

overcorrection, the lowest redshift bins of the two samples show a
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Figure 4. False correction biasF,f)}C_biaSl\ o, for MagLim (top panel) and Figure 5. Mean angular correlation functiof, 1\ °, from raw uncontam-
redMaGiC (bottom panel) relative to thE 1\ © error from the unaltered inated log-normal mocks (black lines) and from decontaminated uncon-
Cosmolike covariance diagonal elements. Negative values are indicative of taminated mocks (blue lines) fédagLim (top panel) and foredMaGiC
overcorrection. Both samples show negligible levels of overcorrection, weak (bottom panel) at their lowest redshift bins. Shaded region correspond to the
dependence with the angular scale and at m@Q%of the statistical error. scales excluded at this redshift. In this redshift bin there 20% of false

The values depicted here have been calculated with signi cance threshold correction with respect to the statistical error due to chance correlations
)1 = 2. Empty dots correspond to the angular scales not considered for between PC maps and mocks. The error bars correspond to the diagonal of
each redshift bin of the samples. the covariance matrix with systematic terms added.

trend to under-correct at the small angular scales, but still above thecorrelation function biased as by the residual systematic uncertainty
scales we exclude. As already mentioned, we expect some level ofestimate (Section 7.2). To test the in uence of these analysis modi -
undercorrection due to the aggressive contamination imprinted on cations on cosmology, we recalculate the constraints on the param-
the mocks. Even under this consideration, these bins cauge’the  eters « and18 marginalizing as before over redshift-bin centroid
of the joint t to exceed our limit, so we incorporate this bias as a positions and widths of the redshift distributions. We use the same
systematic contribution to our covariance matrix. This is covered in priors from Table 3 and the rest of the parameters are xed to the
Section 8.4. In Figure 7, we depict the mean recovered clustering values used to generate the mocks. The results that we obtain are
(blue lines) compared to the true clustering (black lines). We also shown in Figure 8. It can be seen that the recovered contours from
show the mean contaminated correlation function (red lines). It the false correction bias case (run on uncontaminated mocks) are in
can be seen thdSD performs a nearly unbiased decontamination good agreement with those from the reference case, demonstrating
at the largest angular scales. The error bars in this Figure includethat biases from overcorrection in inferred cosmological parameters
the systematic terms added to the covariance (see Figure 11 forare negligible. The contours corresponding to the residual system-
a comparison of the error bars with and without the systematic atic bias (run orENet contaminated mocks) show a small level
contributions). of undercorrection that is translated to slightly higher galaxy bias
values, though this mismatch is also within the statistical uncertain-
ties given by our analytical covariance. This covariance includes a
systematic uncertainty correction that is explained in Section 8.4. In
Finally, as an additional evidence of robustness we check the impactTable 4, we present the di erence in the: and18 mean posteriors

of the decontamination procedure on the estimation of cosmological in units off from uncontaminated mock contours. We note that all
parameters. We use as data vectors i) the mean correlation functiordi erences are smaller tha®v5f . It must be taken into account that,
over 400 uncontaminated mocks, ii) the mean correlation function since the rest of the cosmological parameters are xedltheon-
biased by our overcorrection estimate (Section 7.1) and iii) the meantours are smaller than for any of the nal DES cosmology analyses,

7.3 Impact on parameter estimation
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Figure 6. Residual systematic biaﬁ,g_é_biasl\ ° for MagLim (top panel) Figure 7. Mean angular correlation functioft, 1\ ©, from uncontaminated
andredMaGiC (bottom panel) relative to the 1\ © error from the unal- mocks (black line) and from decontaminated mocks (blue lineyfagLim
teredCosmoLike covariance diagonal. The empty dots represent the scales (top panel) and for foredMaGiC (bottom panel). The red line corresponds
excluded at each bin. Both samples show similar trends: the highest redshiftto the mean of the mocks with contamination added fieNet and the

bins present lower biases, while the lowest ones show important levels of shaded regions represent the scales not used for cosmological constraints.
undercorrection at the smallest scales. On the other hand, the largest scale®hile ISD recovers a nearly unbiased clustering at the largest angular scales,

are recovered nearly unbiased. SincejtReof the total residual bias in all there is an important bias at the smallest ones. For this reason, this e ect is
bins is higher than 3, we add a systematic term to the covariance matrix to marginalised over by adding it a systematic contribution to the error budget.
marginalise over this e ect. The error bars shown take into account this contribution.

making this test more stringent. We found that the me&xe of we only look at the cosmology results once a set of prede ned crite-

the log-normal mocks is slightly shifted to lower amplitudes from ria are ful lled, as is described in DES Collaboration et al. (2021).
the theory prediction with the same input values. This causes someDuring the unblinding process aEdMaGiC we found that this
shifting of the contours as well, but we have veri ed that this does sample passed all the consistency tests we had a priori decided were
not a ect our conclusions from the decontamination methodology. required for unblinding. However, after unblinding, we identi ed a
potential inconsistency between the amplitudes of galaxy clustering
and gg-lensing: either the former has an anomalously high ampli-
tude or the latter has an anomalously low one. This inconsistency is
explored in detail in Pandey et al. (2021).

Observational systematics from survey properties tend to in-
crease the amplitude @¢¥*\° and so one possible explanation is
The DES 3 2pt analysis combines the correlation functions from that the clustering amplitude is anomalously high due to the decon-
galaxy clustering,F1\°, galaxy-galaxy lensing (for short, gg- tamination procedure failing to fully capture all contamination in
lensing), W&\ © and cosmic-sheal 1\°, in order to improve the the data. Thus, the true underlying galaxy correlation function in
individual constraining powers of each probe and to break degen- the data would not be correctly recovered. This led us to perform a
eracies in some cosmological parameters. In addition, since eachvariety of additional tests as we describe below. It was during these
of these 2pt functions is potentially a ected by di erent systematic tests when some of the methods described in Sections 4 and 5 were
e ects, it allows for consistency checks comparing di erent results. incorporated, such as the change in SP map basis (both expanding
The consideration of two di erent lens galaxy samplesfék ° and the number of SP maps and decorrelating them) and the robustness
W&\ © allows us to further assess the robustness of the whole cosmol-checks usingENet and the neural net. Ultimately, we found that
ogy analysis. The cosmology analysis is performed blindly, that is, the di erence between galaxy clustering and lensing observables

8 POST-UNBLINDING INVESTIGATIONS OF THE
IMPACT OF OBSERVATIONAL SYSTEMATICS ON
Wl) o

MNRAS 000, 1 22 (2021)
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Figure 8. Constraints inthe < 18 parameter space at xefig from the mearF 1\ ° of uncontaminated mocks (black contours) and from decontaminated
mocks according to the false correction bias (violet contours) and to the residual systematic bias (blue cofaguis).is shown in the left panel and
redMaGiC in the right one. It can be seen how both the false correction bias and the residual systematic bias lead to small shifts from the reference mocks
relative to the error given by tHeosmoLike analytical covariance, which includes the systematic uncertainty contributions. We only show contours for the rst
redshift bins of the two galaxy samples in this gure, but we verify that the shifts at the other bins are smaller or smaller. Bg@mdsether cosmological
parameters are xed in this test, the posterior is smaller than from any of the DES nal cosmological analyses thaFuse® tata.

MagLim

Parameter  False correction bias  Residual systematic bias

< 0.36 0.08
11 -0.09 0.43
12 -0.06 0.40
18 -0.25 0.12
14 0.05 0.16
15 -0.15 -0.02
16 -0.06 -0.04

redMaGiC

Parameter  False correction bias  Residual systematic bias

< 0.39 0.31
11 -0.29 0.50
12 -0.33 0.11
13 -0.30 0.27
14 -0.32 -0.35
15 -0.19 -0.21

Table 4.Relative di erence inthe < and18 mean of the posteriors for the
two tests on decontaminated mocks in unit$ ofAll values are below half

af . Note that the posteriors in this test are much smaller than in any of the
nal DES cosmology analyses because all the other parameters are xed.

MNRAS 000, 1 22 (2021)

in redMaGiC remained robust to di erent choices in the decon-
tamination procedure. We also applied these additional tests to the
MagLim sample before it was unblinded. In contrast to our results
with theredMaGiC sample, once we unblinded thMagLim sam-

ple we found that its lensing and clustering signals were consistent
with one another. For this reasdviagLim is the ducial choice for

our cosmological constraints (DES Collaboration et al. 2021). The
ducial MagLim cosmology results use only the rst four redshift
bins, as the two highest redshift bins gave inconsistent results, while
adding little constraining power. Porredon et al. (2021a) investigates
these results in detail.

8.1 ISD and ENet at the STD map basis

Before unblinding)SD weights were obtained from a selection of
STD maps performed by setting a limit for the Pearson's correlation
coe cient between them. This selection gave 34 representative STD
maps that were used to obtain weights U (ISD-STD34). More
details on this selection can be found in Appendix B of Carnero
Rosell et al. (2021). To check whether the clustering-lensing in-
consistency found iniedMaGiC was caused by an STD map not
selected in the STD34 set, we re8D on the full list of STD maps,
and veri ed that derived weights did not signi cantly impact the
resulting clustering signal. In Figure 9, we show the correlation
functions at the rst bin ofredMaGiC obtained for these two con-
gurations of ISD with STD maps.

We also checked the subtle possibility of a combination of STD
maps leading to a large systematic contribution despite no single
map being individually signi cant. For this reason, we raNet-
STD107 onredMaGiC, which simultaneously ts to all template
maps, nding a signi cant decrease of 1f in the amplitude of the
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