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We constrain cosmological parameters and galaxy-bias parameters using the combination of galaxy clustering
and galaxy-galaxy lensing measurements from the Dark Energy Survey Year-3 data. We describe our modeling
framework and choice of scales analyzed, validating their robustness to theoretical uncertainties in small-scale
clustering by analyzing simulated data. Using a linear galaxy bias model and redMaGiC galaxy sample, we
obtain constraints on the matter content of the universe to be Ωm = 0.325+0.033

−0.034. We also implement a non-
linear galaxy bias model to probe smaller scales that includes parameterizations based on hybrid perturbation
theory, and find that it leads to a 17% gain in cosmological constraining power. Using the redMaGiC galaxy
sample as foreground lens galaxies, we find the galaxy clustering and galaxy-galaxy lensing measurements to
exhibit significant signals akin to decorrelation between galaxies and mass on large scales, which is not expected
in any current models. This likely systematic measurement error biases our constraints on galaxy bias and
the (8 parameter. We find that a scale-, redshift- and sky-area-independent phenomenological decorrelation
parameter can effectively capture this inconsistency between the galaxy clustering and galaxy-galaxy lensing.
We perform robustness tests of our methodology pipeline and demonstrate stability of the constraints to changes
in the theory model. After accounting for this decorrelation, we infer the constraints on the mean host halo
mass of the redMaGiC galaxies from the large-scale bias constraints, finding the galaxies occupy halos of mass
approximately 1.5 × 1013"�/ℎ.



3

I. INTRODUCTION

Wide-area imaging surveys of galaxies provide cosmo-
logical information through measurements of galaxy clus-
tering and weak gravitational lensing. Galaxies are use-
ful tracers of the full matter distribution, and their spa-
tial clustering is used to infer the matter power spectrum.
The shapes of distant galaxies are lensed by the interven-
ing matter, providing a second way to probe the mass dis-
tribution. With wide-area galaxy surveys, these two probes
of the late time universe have provided information on both
the geometry and growth of structure in the universe. In re-
cent years, the combination of three two-point correlations—
cosmic shear (the lensing shear auto-correlation), galaxy-
galaxy lensing (the cross-correlation of lens galaxy positions
with shear) and the angular auto-correlation of the lens galaxy
positions—have been developed in a theoretical framework
[6, 13, 14, 115, 123] and used to constrain cosmological pa-
rameters [15, 20, 30, 66, 80, 82, 104, 116]. In practice, two
galaxy samples are used: lens galaxies tracing the foreground
large scale structure, and background source galaxies whose
shapes are used to infer the lensing shear. The Dark Energy
Survey (DES) presented cosmological constraints from their
Year 1 (Y1) data set from cosmic shear [111] and a joint anal-
ysis of all three two-point correlations (henceforth called the
“3 × 2pt” datavector) [1].

This paper is part of a series describing themethodology and
results of DES Year 3 (Y3) 3×2pt analysis. The cosmological
constraints are presented for cosmic shear [5, 99], the com-
bination of galaxy clustering and galaxy-galaxy lensing using
two different lens galaxy samples [this paper; 31, 89], as well
as the 3 × 2pt analysis [23]. These cosmological results are
enabled by extensive methodology developments at all stages
of the analysis from pixels to cosmology, which are referenced
throughout. This paper presents the modeling methodology
and cosmology inference from DES Y3 galaxy clustering [93]
and galaxy-galaxy lensing [92] measurements. We focus on
the redMaGiC [94] galaxy sample, described further below. A
parallel analysis using a different galaxy sample, the MagLim
sample [90], is presented in a separate paper [89].

Incomplete theoretical understanding of the relationship of
galaxies to the mass distribution, called galaxy bias, has been a
limiting factor in interpreting the lens galaxy auto-correlation
function (denoted F(\)) and galaxy-galaxy lensing (and de-
noted Wt (\)). At large scales, galaxy bias can be described
by a single number, the linear bias 11. On smaller scales,
bias is non-local and non-linear, and its description is com-
plicated [43, 98]. Perturbation theory (PT) approaches have
been developed for quasi-linear scales ∼ 10 Mpc, though the
precise range of scales of its validity is a subtle question that
depends on the galaxy population, the theoretical model, and
the statistical power of the survey.

With a model for galaxy bias, F(\) and Wt measurements,
together called the “2 × 2pt” datavector, can probe the under-
lying matter power spectrum. They are also sensitive to the
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distance-redshift relation over the redshift range of the lens and
source galaxy distributions. These two datavectors constitute
a useful subset of the full 3 × 2pt datavector, since bias and
cosmological parameters can both be constrained (though the
uncertainty in galaxy bias would limit either F(\) or Wt (\)
individually).
A major part of the modeling and validation involves PT

models of galaxy bias and tests using mock catalogs based
on N-body simulations with various schemes of populating
galaxies. Approaches based on the halo occupation distribu-
tion (HOD) have been widely developed and are used for the
DES galaxy samples. For the Year 3 (Y3) dataset of DES, two
independent sets of mock catalogs have been developed, based
on the Buzzard[25] and MICE simulations [22, 40, 41].
An interesting recent development in cosmology is a possi-

ble disagreement between the inference of the expansion rate
and the amplitude of mass fluctuations (denoted f8) and di-
rect measurements or the inference of these quantities in the
late-time universe. The predictions are anchored via mea-
surements of the cosmic microwave background (CMB) and
use general relativity and a cosmological model of the uni-
verse to extrapolate to late times. This cosmological model,
denoted by ΛCDM, relies on two ingredients in the energy
budget of the universe that have yet to be directly detected:
cold dark matter (CDM) and dark energy in the form of a cos-
mological constant denoted as Λ. The value of f8 inferred
from measurements of cosmic shear and the 3 × 2pt datavec-
tor [1, 5, 23, 51, 52, 99, 111], from galaxy clusters [2, 110]
and the redshift-space power spectrum [88] tends to be lower
than the CMB prediction. The significance of this tension is
a work in progress and crucial to the viability of ΛCDM. The
Hubble tension refers to the measured expansion rate being
higher than predicted by the CMB. The resolution of the two
tensions, and their possible relationship, is an active area of
research in cosmology and provides additional context for the
analysis presented here.
Figure 1, based on simulated data, shows the expected con-

straints on (8 and Ωm from the 2 × 2pt datavector and cosmic
shear (1 × 2pt). It is evident that the two have some com-
plementarity, which enables the breaking of degeneracies in
both ΛCDM and FCDM cosmological models (where F is
the dark energy equation of state parameter and F ≠ −1 points
towards the departure from standard ΛCDM model). Partic-
ularly noteworthy are the significantly better constraints com-
pared to 1 × 2pt on the parameter F and Ωm using 2 × 2pt in
the FCDM and ΛCDM models respectively. Note that unlike
in 1 × 2pt, where all the matter in front of source galaxy con-
tributes to its signal, 2 × 2pt receives contribution only from
galaxies within the narrow lens redshift bins. Therefore, we
attribute better constraints on these cosmological parameters
from 2 × 2pt to significantly more precise redshifts of the lens
galaxy sample. This allows for precise tomographic measure-
ments of 2 × 2pt datavector which constrains the background
geometric parameters like F and Ωm. With data, these some-
what independent avenues to cosmology provide a valuable
cross-check, as the leading sources of systematics are largely
different.

The formalism used to compute the 2 × 2pt datavector is
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Figure 1. Comparison of simulated constraints on cosmological pa-
rameters Ωm and (8 from cosmic shear alone (1 × 2pt), galaxy clus-
tering + galaxy-galaxy lensing (2×2pt) and including all three probes
(3 × 2pt). This plot uses a simulated noise-less baseline datavector
(see §IVB) and shows that 2×2pt adds complementary information to
cosmic shear constraints, particularly, providing stronger constraints
on Ωm and F.

presented in §II. The description of the lens and source galaxy
samples, their redshift distributions andmeasurement method-
ology of our datavector and its covariance estimation are pre-
sented in §III. In §IV we validate our methodology using
N-body simulations and determine the scale cuts for our anal-
ysis. Note that in this paper we focus on validation of analysis
when using the redMaGiC lens galaxy sample and we refer the
reader to Porredon et al. [89] for validation of analysis choices
for the MagLim sample. The results on data are presented in
§V, and we conclude in §VI.

II. THEORETICAL MODEL

A. Two-point correlations

Here we describe the hybrid perturbation theory (PT) model
used to make theoretical predictions for the two-point statistics
F(\) and WC (\).

1. Power spectrum

To compute the two-point projected statistics F(\) and
Wt (\), we first describe our methodology of predicting galaxy-
galaxy and galaxy-matter power spectra (%gg and %gm respec-
tively). PT provides a framework to describe the distribution of
biased tracers of the underlying darkmatter field in quasi-linear
and linear scales. This framework allows for an order-by-order
controlled expansion of the overdensity of biased tracer (here
galaxies) in terms of the overdensity of the dark matter field
where successively higher-order non-linearities dominate only
in successively smaller-scale modes. We will analyze two PT
models in this analysis, an effective linear bias model (that
is complete only at first order) and an effective one–loop PT
model (that is complete up-to third order).
For the linear bias model, we can write the galaxy-matter

cross spectrum as %gm (:) = 11%mm and auto-power spectrum
of the galaxies as %gg (:) = 12

1%mm (:). Here 11 is the linear
bias parameter and %mm (:) is the non-linear power spectrum
of the matter field. We use the non-linear matter power spec-
trum prediction from Takahashi et al. [107] to model %mm (:)
(referred to as Halofit hereafter). We use the Bird et al. [9]
prescription to model the impact of massive neutrinos in this
Halofit fitting formula. See [64] for robustness tests of this
choice.

In the effective one–loop PT model used here, %gm and %gg
can be expressed as:

%gm (:, I) = 11%mm (:, I) +
1
2
12%b1b2 (:, I) +

1
2
1s%b1s2 (:, I)

+ 1
2
13nl%b1b3nl (:, I) (1)

%gg (:, I) = 12
1%mm (:, I) + 1112%b1b2 (:, I) + 111s%b1s2 (:, I)

+ 1113nl%b1b3nl (:, I) +
1
4
12

2%b2b2 (:, I)

+ 1
2
121s%b2s2 (:, I) + 1

4
12

s%s2s2 (:, I). (2)

Here the parameters 11, 12, 1s and 13nl are the renormalized
bias parameters [81]. The kernels %b1b2 , %b1s2 , %b1b3nl , %b2b2 ,
%b2s2 and %s2s2 are described in [95] and are calculable from
the linear matter power spectrum. We validated this model in
[87] using 3D correlation functions, bgg and bgm, of redMaGiC
galaxies measured in DES-like simulations. These configura-
tion space statistics are the Fourier transforms of the power
spectra mentioned above. We found this model to describe the
high signal-to-noise 3Dmeasurements above scales of 4Mpc/h
and redshift I < 1 with a reduced j2 consistent with one. Our
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tests also showed that at the projected precision of this analy-
sis, two of the nonlinear bias parameters (1s and 13nl) can be
fixed to their co-evolution values given by 1s = (−4/7) (11−1)
and 13nl = (11 − 1). We will use this result as our fiducial
modeling choice for the one–loop PT model.

2. Angular correlations

In order to calculate our observables F(\) and Wt (\), we
project the 3D power spectra described above to angular space.
The projected galaxy clustering and galaxy-galaxy lensing an-
gular power spectra of tomography bins 8, 9 are given by:

�
8 9

��
(ℓ) = 2

c

∫
3j1,

i
�(j1)

∫
3j2,

j
�
(j2)∫

3: :2 %�� (:, I(j1), I(j2)) 9ℓ (: j1) 9ℓ (: j2) ,
(3)

where, �� = gg models galaxy clustering and �� = g^,
where ^ denotes the convergence field, models galaxy-galaxy
lensing. Here , 8

g (j) = =86 (I(j))3I/3j is the normalized
radial selection function of lens galaxies for tomographic bin
8, and , i

^ is the tomographic lensing efficiency of the source
sample

, 8
^ (j) =

3Ωm�
2
0

2

∫ ∞

j

3j′=′s (I(j′))
j

0(j)
j′ − j
j′

, (4)

with =8g/s (I) the normalized redshift distribution of the
lens/source galaxies in tomography bin 8. For the galaxy-
galaxy lensing observable, we use the Limber approximation
[76, 77] which simplifies the Eq. 3 to

�
8 9
g^ (ℓ) =

∫
3j
, 8

g (j),
9
^ (j)

j2 %g^

(
: =

; + 1/2
j

, I(j)
)
. (5)

In the absence of other modeling ingredients that are de-
scribed in the next section, we have �8 9g^ (ℓ) ≡ �8 9gm (ℓ) (simi-
larly %g^ ≡ %gm). As described in Fang et al. [35], even at the
accuracy beyond this analysis, it is sufficient to use the Limber
approximation for the galaxy-galaxy lensing observable, while
for galaxy clustering this may cause significant cosmological
parameter biases.

To evaluate galaxy clustering statistics using Eq. 3, we split
the predictions into small and large scales. The non-Limber
correction is only significant on large scales where non-linear
contributions to the matter power spectra as well as galaxy
biasing are sub-dominant. Therefore we use the Limber ap-
proximation for the small-scale non-linear corrections and use
non-Limber corrections strictly on large scales using linear the-
ory. Schematically, i.e., ignoring contributions from redshift-
space distortions and lens magnification [see 64, for details],
the galaxy clustering angular power spectrum between tomo-
graphic bins 8 and 9 is given by:

�
8 9
gg (ℓ)

=

∫
3j

, 8
g (j),

9
g (j)

j2

[
%gg

(
ℓ + 0.5
j

, j

)
− 1811

9

1%lin

(
ℓ + 0.5
j

, j

)]
+ 2
c

∫
3j1 1

8
1,

8
g (j1)� (I(j1))

∫
3j2 1

9

1,
9

g (j2)� (I(j2))
∫

3:

:
:3%lin (:, 0) 9ℓ (: j1) 9ℓ (: j2) , (6)

where � (I(j)) is the growth factor, and %lin is the linear
matter power spectrum. The full model of galaxy clustering,
including the contributions from other modeling ingredients
like redshift-space distortions and lens magnification that we
describe below, is detailed in [35] and [64].

The real-space projected statistics of interest can be obtained
from these angular correlations via:

F8 9 (\) =
∑ 2ℓ + 1

4c
%ℓ (cos(\)) �8 9gg (ℓ) (7)

W
8 9

t (\) =
∑ 2ℓ + 1

4cℓ(ℓ + 1) %
2
ℓ
(cos(\)) �8 9g^ (ℓ) (8)

where %ℓ and %2
ℓ
are bin-averaged Legendre Polynomials (see

[42] for exact expressions).

B. The rest of the model

To describe the statistics measured from data, we have to
model various other physical phenomena that contribute to
the signal to obtain unbiased inferences. In this section, we
describe the leading sources of these modeling systematics.
We have also validated in [64] that higher-order corrections do
not bias our results.

1. Intrinsic Alignment

Galaxy-galaxy lensing aims to isolate the percent-level co-
herent shape distortions, or shear, of background source galax-
ies due to the gravitational potential of foreground lens galax-
ies. The local environment, however, including the gravita-
tional tidal field, can also impact the intrinsic shapes of source
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galaxies and contribute to the measured shear signal. This
interaction between the source galaxies and their local envi-
ronment, generally known as “intrinsic alignments” (IA) is
non-random. When there is a non-zero overlap between the
source and lens redshift distributions, IA can have a non-zero
contribution to the galaxy-galaxy lensing signal. To account
for this effect, we model IAs using the “tidal alignment and
tidal torquing” (TATT) model [11]. Ignoring higher-order ef-
fects, such as lens magnification (see [31, 92]), IA contributes
to the galaxy-shear angular power spectra through the corre-
lation of lens density and the �-mode component of intrinsic
source shapes: �8 9g^ (ℓ) → �

8 9
g^ (ℓ) +�8 9gIE

(ℓ). The �8 9gIE
(ℓ) term

is detailed inKrause et al. [64], Secco, Samuroff et al. [99], Prat
et al. [92], and Blazek et al. [11]. Within our implementation
of the TATT framework, �8 9gIE

(ℓ) for all tomographic bin com-
binations 8 and 9 can be expressed using five IA parameters
— 01 and 02 (normalization of linear and quadratic align-
ments); U1 and U2 (their respective redshift evolution); and 1ta
(normalization of a density-weighting term) — and the linear
lens galaxy bias. Therefore this model captures higher order
contributions to the intrinsic alignment of source galaxies as
compared to the simpler non-linear alignment (NLA) model
that was used in the DES Y1 analysis [1, 63]. In principle,
there are also contributions at one-loop order in PT involving
the non-linear galaxy bias and non-linear IA terms. However,
in this analysis, we neglect these terms as we expect them to be
subdominant, and they can be largely captured through the free
1ta parameter (see [10] for further discussion of these terms).

2. Magnification

All the matter between the observed galaxy and the observer
acts as a gravitational lens. Hence, the galaxies get magnified,
increasing the size of galaxy images (parameterized by the
magnification factor, `) and increasing their total flux. The
galaxy magnification decreases the observed number density
due to stretching of the local sky, whereas increasing the total
flux results in an increase in number density (as intrinsically
fainter galaxies, which are more numerous, can be observed).
This changes the galaxy-galaxy angular power spectrum to:
�
8 9
gg (ℓ) → �

8 9
gg (ℓ) +�8 9`g (ℓ) +�8 9`` (ℓ) and the galaxy-shear an-

gular power spectrum to�8 9g^ (ℓ) → �
8 9
g^ (ℓ) +�8 9`IE

(ℓ) +�8 9`^ (ℓ).
The auto and cross-power spectra with magnification are again
given by Eq.3 (see [64] for the detailed description of the equa-
tions for each of the power spectra).

The magnification coefficients are computed with the Bal-
rog image simulations [32, 106] in a process described in
[31]. Galaxy profiles are drawn from the DES deep fields [50]
and injected into real DES images [83]. The full photometry
pipeline [100] and redMaGiC sample selection are applied
to the new images to produce a simulated redMaGiC sample
with the same selection effects as the real data. To compute
the impact of magnification, the process is repeated, this time
applying a constant magnification to each injected galaxy. The
magnification coefficients are then derived from the fractional
increase in number density when magnification is applied.

This method captures both the impact of magnification on the
galaxy magnitudes and the galaxy sizes, including all numer-
ous sample selection effects. A similar procedure is repeated
to estimate the magnification coefficients for the MagLim sam-
ple. We refer the reader to Elvin-Poole, MacCrann et al. [31]
for further details about the impact of magnification on our
observable and their constraints from data.

3. Non-locality of galaxy-galaxy lensing

The configuration-space estimate of the galaxy-galaxy lens-
ing signal is a non-local statistic. The galaxy-galaxy lensing
signal of source galaxy at redshift Is by the matter around
galaxy at redshift Il at transverse distance ' is related to the
mass density of matter around lens galaxy by:

Wt ('; Ig, Is) =
ΔΣ('; Ig)
Σcrit (Ig, Is)

, (9)

where, ΔΣ('; Ig) = Σ̄(0, '; Ig) − Σ('; Ig) and Σ('; Ig) is
the surface mass density at a transverse separation ' from the
lens and Σ̄(0, ') is the average surface mass density within a
separation ' from that lens. Through the Σ̄(0, ') term, Wt at
any scale ' is dependent on the mass distribution at all scales
less than '. This makes Wt highly non-local, and any model
that is valid only on large scales above some Amin will break
down more rapidly than for a more local statistic like F(\).
However, as the dependence on small scales is through the
mean surface mass density, the impact of the mass distribution
inside Amin on Wt (\) can be written as:

Wt ('; Ig, Is) =
1

Σcrit (Ig, Is)

(
ΔΣmodel (Ig) +

�(Ig)
'2

)
, (10)

where ΔΣmodel is the prediction from a model (which is given
by PT here) that is valid on scales above Amin (also see [6]).
Here, � is the effective total residual mass below Amin and
is known as the point mass (PM) parameter. In this analysis
we use the thin redshift bin approximation (see Appendix A
for details of this validation) and hence the average Wt signal
between lens bin 8 and source bin 9 can be written as:

W
8 9

t = W
8 9

t,model + �
8 9/\2, (11)

where,

�8 9 = �8
∫

3Ig 3Is =
8
g =

9
s Σ
−1
crit (Ig, Is) j−2 (Ig) ≡ �8 V8 9 .

(12)
Here �8 is the PM for lens bin 8, =8g is the redshift distribu-
tion of lens galaxies for tomographic bin 8, = 9s is the redshift
distribution of source galaxies for tomographic bin 9 .

However, instead of directly sampling over the parame-
ters �8 for each tomographic bin, we implement an analytic
marginalization scheme as described in [79]. We modify
our inverse-covariance when calculating the likelihood as de-
scribed in §III D 2.
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III. DATA DESCRIPTION

A. DES Y3

The full DES survey was completed in 2019 using the Cerro
Tololo Inter-American Observatory (CTIO) 4-m Blanco tele-
scope in Chile and covered approximately 5000 square degrees
of the South Galactic Cap. This 570-megapixel Dark Energy
Camera [39] images the field in five broadband filters, grizY,
which span the wavelength range from approximately 400nm
to 1060nm. The raw images are processed by the DES Data
Management team [84, 101] and after a detailed object selec-
tion criteria on the first three years of imaging data (detailed in
Abbott & Abdalla et al., [1]), the Y3 GOLD data set containing
400 million sources is constructed (single-epoch and coadd
images are available1 as Data Release 1). We further pro-
cess this GOLD data set to obtain the lens and source catalogs
described in the following sub-sections.

1. redMaGiC lens galaxy sample

The principal lens sample used in this analysis is selected
with the redMaGiC algorithm [94] run on DES Year 3 data.
redMaGiC selects Luminous Red Galaxies (LRGs) accord-
ing to the magnitude-color-redshift relation of red-sequence
galaxies, calibrated using an overlapping spectroscopic sam-
ple. This sample has a threshold luminosity !min and constant
co-moving density. The full redMaGiC algorithm is described
in Rozo et al. [94], and after application of this algorithm to
DES Y3 data, we have approximately 2.6 million galaxies.

Rodríguez-Monroy et al. [93] found that theredMaGiC num-
ber density fluctuates with several observational properties of
the survey, which imprints a non-cosmological bias into the
galaxy clustering. To account for this we assign a weight to
each galaxy, which corresponds to the inverse of the angular
selection function at that galaxy’s location. The computation
and validation of these weights are described in [93].

2. MagLim lens galaxy sample

DES cosmological constraints are also derived using a sec-
ond lens sample, MagLim, selected by applying the criterion
8 < 4I + 18 to the GOLD catalog, where I is the photometric
redshift estimate given by DNF [24]. This selection is shown by
Porredon et al. [90] to be optimal in terms of its 2×2pt cosmo-
logical constraints. We additionally apply a lower magnitude
cut, 8 > 17.5, to remove contamination from bright objects.
The resulting sample has about 10.7 million galaxies.

Similarly to redMaGiC, we correct the impact of observa-
tional systematics on the MagLim galaxy clustering by assign-
ing a weight to each galaxy, as described and validated in

1 https://des.ncsa.illinois.edu/releases/dr1

[93]. This sample is then used in Porredon et al. [89] to ob-
tain cosmological constraints from the combination of galaxy
clustering and galaxy-galaxy lensing from DES Y3 data. We
refer to [89] for a detailed description of the sample and its
validation.

3. Source galaxy shape catalog

To estimate the weak lensing shear of the observed source
galaxies, we use the Metacalibration algorithm [54, 102].
This method estimates the response of a shear estimator to arti-
ficially sheared galaxy images and incorporates improvements
like better PSF estimation [58], better astrometric methods
[100] and inclusion of inverse variance weighting. The details
of the method applied to our galaxy sample are presented in
[45]. This methodology does not capture the object-blending
effects and shear-dependent detection biases and we use im-
age simulations to calibrate this bias as detailed in MacCrann
et al. [78]. The galaxies that pass the selection cuts designed
to reduce systematic biases (as detailed in Gatti, Sheldon et al.
[45]) are used to make our source sample shape catalog. This
catalog consists of approximately 100 million galaxies with
effective number density of =eff = 5.6 galaxies per arcmin2

and an effective shape noise of fe = 0.26.

B. Buzzard Simulations

The Buzzard simulations are #-body lightcone simula-
tions that have been populated with galaxies using the Ad-
dgals algorithm [114], endowing each galaxy with positions,
velocities, spectral energy distributions, broad-band photom-
etry, half-light radii and ellipticities. In order to build a light-
cone that spans the entire redshift range covered by DES Y3
galaxies, we combine three lightcones constructed from sim-
ulations with box sizes of 1.05, 2.6 and 4.0 (ℎ−3 Gpc3), mass
resolutions of 3.3× 1010, 1.6× 1011, 5.9× 1011 ℎ−1"�, span-
ning redshift ranges 0.0 < I ≤ 0.32, 0.32 < I ≤ 0.84 and
0.84 < I ≤ 2.35 respectively. Together these produce 10, 000
square degrees of unique lightcone. The lightcones are run
with the L-Gadget2 #-body code, a memory optimized ver-
sion of Gadget2 [105], with initial conditions generated using
2LPTIC at I = 50 [21]. From each 10, 000 square degree cat-
alog, we can create two DES Y3 footprints.
The Addgals model uses the relationship, %(X' |"A ), be-

tween a local density proxy, X', and absolute magnitude "A
measured from a high-resolution subhalo abundance match-
ing (SHAM) model in order to populate galaxies into these
lightcone simulations. The Addgals model reproduces the
absolute–magnitude–dependent clustering of the SHAM. Ad-
ditionally, we employ a conditional abundance matching
(CAM) model, assigning redder SEDs to galaxies that are
closer to massive dark matter halos, in a manner that allows us
to reproduce the color-dependent clustering measured in the
Sloan Digital Sky Survey Main Galaxy Sample (SDSS MGS)
[27, 114].
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These simulations are ray-traced using the spherical-
harmonic transform (SHT) configuration of Calclens, where
the SHTs are performed on an #side = 8192 HealPix grid
[7]. The lensing distortion tensor is computed at each galaxy
position and is used to deflect the galaxy angular positions,
apply shear to galaxy intrinsic ellipticities, including effects
of reduced shear, and magnify galaxy shapes and photometry.
We have conducted convergence tests of this algorithm and
found that resolution effects are negligible on the scales used
for this analysis [25].

Once the simulations have been ray-traced, we apply DES
Y3-specific masking and photometric errors. To mask the
simulations, we employ the Y3 footprint mask but do not
apply the bad region mask [100], resulting in a footprint with
an area of 4143.17 square degrees. Each set of three #-body
simulations yields two Y3 footprints that contain 520 square
degrees of overlap. In total, we use 18 Buzzard realizations
in this analysis.

We apply a photometric error model to simulate wide-field
photometric errors in our simulations. To select a lens galaxy
sample, we run the redMaGiC galaxy selection on our sim-
ulations using the same configuration as used in the Y3 data,
as described in Rodríguez-Monroy et al. [93]. A weak lens-
ing source selection is applied to the simulations using PSF-
convolved sizes and 8-band SNR tomatch the non-tomographic
source number density, 5.9 arcmin−2, from the Metacalibra-
tion source catalog. This matching was performed using a
slightly preliminary version of the Metacalibration cata-
log, so this number density is slightly different from the final
Metacalibration catalog that is used in our DES Y3 anal-
yses. We employ the fiducial redshift estimation framework
(see §III C 3) to our simulations in order to place galaxies
into four source redshift bins with number densities of 1.46
arcmin−2 each. Once binned, we match the shape noise of the
simulations to that measured in the Metacalibration cat-
alog per tomographic bin, yielding shape noise values of
f4 = [0.247, 0.266, 0.263, 0.314].

Two-point functions are measured in the Buzzard simu-
lations using the same pipeline used for the DES Y3 data,
where we set Metacalibration responses and inverse vari-
ance weights equal to 1 for all galaxies, as these are not as-
signed in our simulation framework. We have opted to make
measurements without shape noise in order to reduce the vari-
ance in the simulated analyses using thesemeasurements. Lens
galaxy weights are produced in a manner similar to that done
in the data and applied to measure our clustering and lensing
signals. The clustering and galaxy-galaxy lensing predictions
match the DES redMaGiC measurements to 10 − 20% accu-
racy over most scales and tomographic bins, except for the first
lens bin, which disagrees by 50% in F(\). We refer the reader
to DeRose et al. [26] for a more detailed comparison.

C. Tomography and measurements

1. redMaGiC redshift methodology

We split the redMaGiC sample into #z,g = 5 tomo-
graphic bins, selected on the redMaGiC redshift point esti-
mate quantity ZREDMAGIC. The bin edges used are I =
0.15, 0.35, 0.50, 0.65, 0.80, 0.90. The first three bins use a
luminosity threshold of !min > 0.5!∗ and are known as the
high-density sample. The last two redshift bins use a lu-
minosity threshold of !min > 1.0!∗ and are known as the
high-luminosity sample.

The redshift distributions are computed by stacking four
samples from the PDF of each redMaGiC galaxy, allowing
for non-Gaussianity of the PDF. We find an average individual
redshift uncertainty offI/(1+I) < 0.0126 in the redshift range
used from the variance of these samples. We refer the reader
to Rozo et al. [94] for more details on the algorithm of redshift
assignment for redMaGiC galaxies and to Cawthon et al. [16]
for more details on the calibration of redshift distribution of
the Y3 redMaGiC sample.

2. MagLim redshift methodology

We use DNF [24] for splitting the MagLim sample into tomo-
graphic bins and estimating the redshift distributions. DNF uses
a training set from a spectroscopic database as reference, and
then provides an estimate of the redshift of the object through
a nearest-neighbors fit in a hyperplane in color and magnitude
space.
We split the MagLim sample into #z,g = 6 tomographic

bins from I = 0.2 and I = 1.05, selected using the
DNF photometric redshift estimate. The bin edges are
[0.20, 0.40, 0.55, 0.70, 0.85, 0.95, 1.05]. The redshift distri-
butions in each bin are then computed by stacking the DNF
PDF estimates of each MagLim galaxy. See [89] for a more
comprehensive description and validation of thismethodology.

3. Source redshift methodology

The description of the tomographic bins of source samples
and the methodology for calibrating their photometric red-
shift distributions are summarized in Myles, Alarcon et al.
[85]. Overall, the redshift calibration methodology involves
the use of self-organizing maps [85], clustering redshifts [44]
and shear-ratio [97] information. The Self-Organizing Map
Photometric Redshift (SOMPZ) methodology leverages addi-
tional photometric bands in the DES deep-field observations
[50] and the Balrog simulation software [33] to characterize
a mapping between color space and redshifts. This mapping is
then used to provide redshift distribution samples in the wide
field, after including the uncertainties from sample variance
and galaxy flux measurements in a way that is not subject
to selection biases. The clustering redshift methodology per-
forms the calibration by analyzing cross-correlations between
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Figure 2. Comparison of the normalized redshift distributions of
various tomographic bins of the source galaxies and redMaGiC lens
galaxies in the data.

redMaGiC and spectroscopic data from Baryon Acoustic Os-
cillation Survey (BOSS) and its extension (eBOSS). Candidate
=s (I) distributions are drawn from the posterior distribution
defined by the combination of SOMPZ and clustering-redshift
likelihoods. These two approaches provide us the mean red-
shift distribution of source galaxies and uncertainty in this
distribution. The shear-ratio calibration uses the ratios of
small-scale galaxy-galaxy lensing data, which are largely in-
dependent of the cosmological parameters but help calibrate
the uncertainties in the redshift distributions. We include it
downstream in our analysis pipeline as an external likelihood,
as briefly described in §III C 5 and detailed in Sánchez, Prat
et al. [97].

Finally, we split the source catalog into #z,s = 4 tomo-
graphic bins. The mean redshift distribution of redMaGiC
lens galaxies and source galaxies are compared in Fig. 2. We
refer the reader to Porredon et al. [89] for MagLim sample
redshift distribution.

4. 2pt measurements

For galaxy clustering, we use the Landy-Szalay estimator
[67] given as:

F(\) = �� − 2�' + ''
''

(13)

where ��, �' and '' are normalized weighted number
counts of galaxy-galaxy, galaxy-random and random-random
pairs within angular and tomographic bins. For lens tomo-
graphic bins, we measure the auto-correlations in #\ = 20
log-spaced angular bins ranging from 2.5 arcmin to 250 ar-
cmin. Each lens galaxy in the catalog (68) is weighted with
its systematic weight Fgi . This systematic weight aims to re-
move the large-scale fluctuations due to changing observing
conditions at the telescope and Galactic foregrounds. Our
catalog of randoms is 40 times larger than the galaxy cata-
log. The validation of this estimator and systematic weights
of the lens galaxies is presented in [93]. In total we have
#F (\) = #z,g × #\ = 100 measured F(\) datapoints.
The galaxy-galaxy lensing estimator used in this analysis is

given by:

Wt (\) =
∑
: Fr:∑
8 Fg8

∑
8 9 Fg8Fs 9 4

LS
t,8 9∑

: 9 Fr:Fs 9
−

∑
: 9 Fr:Fs 9 4

RS
t,: 9∑

: 9 Fr:Fs 9
(14)

where 4LS
t,8 9 and 4

RS
t,: 9 is the measured tangential ellipticity

of source galaxy 9 around lens galaxy 8 and random point :
respectively. The weight Fg8 is the systematic weight of lens
galaxy as described above, Fr: is the weight of random point
that we fix to 1 and Fs 9 is the weight of the source galaxy
that is computed from inverse variance of the shear response
weighted ellipticity of the galaxy (see Gatti, Sheldon et al. [45]
for details). This estimator has been detailed and validated in
Singh et al. [103] and Prat et al. [92]. We measure this signal
for each pair of lens and source tomographic bins and hence
in total we have #Wt (\) = #z,g × #z,s × #\ = 400 measured
Wt (\) datapoints.
We analyze both of these measured statistics jointly and

hence we have in total #data = #F (\) + #Wt (\) = 500 data-
points. Our measured signal to noise (SNR)2, using redMaGiC
lens sample, of F(\) is 171 [93], of Wt (\) is 121 [92]; giving
total joint total SNR of 196. In the §IV, we describe and
validate different sets of scale cuts for the linear bias model
(angular scales corresponding to (8,6)Mpc/ℎ for F(\), Wt (\)
respectively) and the non-linear bias model ((4,4)Mpc/ℎ). Af-
ter applying these scale cuts, we obtain the joint SNR, that we
analyze for cosmological constraints, as 81 for the linear bias
model and 106 for the non-linear bias model.3

2 The SNR is calculated as
√
( ®DC−1 ®D) , where ®D is the data under con-

sideration and C is its covariance.
3 Using a more optimal SNR estimator, SNR= ( ®Ddata C−1 ®Dmodel )√

( ®Dmodel C−1 ®Dmodel )
, where

®Ddata is the measured data and ®Dmodel is the bestfit model, we get
SNR=79.5 for the linear bias model scale cuts of (8,6)Mpc/ℎ.
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5. Shear ratios

As will be detailed in §IVA3, in this analysis, we remove
the small scales’ non-linear information from the 2pt measure-
ments that are presented in the above sub-section. However,
as presented in Sánchez, Prat et al. [97], the ratio of Wt (\)
measurements for the same lens bin but different source bins
is well described by our model (see §II) even on small scales.
Therefore we include these ratios (referred to as shear-ratio
henceforth) as an additional independent dataset in our likeli-
hood. In this shear-ratio datavector, we use the angular scales
above 2Mpc/ℎ and less than our fiducial scale cuts for 2pt mea-
surements described in §IVA3 (we also leave two datapoints
between 2pt scale cuts and shear-ratio scale cuts to remove
any potential correlations between the two). The details of the
analysis choices for shear-ratio measurements and the corre-
sponding covariance matrix are detailed in Sánchez, Prat et al.
[97] and DES Collaboration [23].

D. Covariance

In this analysis, the covariance between the statistic F(\)
and Wt (\) (C) is modeled as the sum of a Gaussian term
(CG), trispectrum term (CNG) and super-sample covariance
term (CSSC). The analytic model used to describe (CG) is de-
scribed in [42]. The terms CNG and CSSC are modeled using a
halo model framework as detailed in [61, 63]. The covariance
calculation has been performed using the CosmoCov package
[34], and the robustness of this covariance matrix has been
tested and detailed in [42]. We also account for two additional
sources of uncertainties that are not included in our fiducial
model using the methodology of analytical marginalization
[12] as detailed below.

1. Accounting for LSS systematics

As described in [93], we modify the F(\) covariance to
analytically marginalize over two sources of uncertainty in
the correction of survey systematics: the choice of correction
method, and the bias of the fiducial method as measured on
simulations.

These systematics are modelled as

F′(\) = F(\) + �1ΔFmethod (\) + �2Fr. s. bias (\) , (15)

where ΔFmethod (\) is the difference between two systemat-
ics correction methods: Iterative Systematic Decontamination
(ISD) and Elastic Net (ENet), and Fr. s. bias (\) is the residual
systematic bias measured on Log-normal mocks. Both terms
are presented in detail in [93]. Also note that here �1 and �2
are arbitrary amplitudes.

We analytically marginalise over these terms assuming a
unit Gaussian as the prior on the amplitudes �1 and �2. The
measured difference is a 1f deviation from the prior center.
The final additional covariance term to be added to the fiducial
covariance is:

ΔC = �wmethod�wmethod
) + wr. s. biaswr. s. bias

) . (16)

The systematic contribution to each tomographic bin is
treated as independent so the covariance between lens bins
is not modified.

2. Point mass analytic marginalization

As mentioned in §II B 3, we modify the inverse covariance
to perform analytic marginalization over the PM parameters.
As detailed in [79], using the generalization of the Sherman-
Morrison formula, this procedure changes our fiducial inverse-
covariance C−1 to C−1

wPM as follows:

C−1
wPM = C−1 − C−1U (I + UTC−1U )−1UTC−1 . (17)

Here C−1 is the inverse of the halo-model covariance as
described above, I is the identity matrix andU is a #data×#z,g
matrix where the 8-th column is given by f�8®C8 . Here f�8 is
the standard deviation of the Gaussian prior on point mass
parameter �8 and ®C8 is given as:

(
®C8
)
0

=


0

if 0-th element does not correspond
to Wt (\) and if lens-redshift of 0-th
element ≠ 8

V8 9\−2
0 otherwise

(18)

where the expression for V8 9 is shown in Eq.12. We evaluate
that term at fixed fiducial cosmology as given in Table I. In our
analysis we put a wide prior on PM parameters �8 by choosing
f�8 = 10000 which translates to the effective mass residual
prior of 1017"�/ℎ (see Eq. A1).

IV. VALIDATION OF PARAMETER INFERENCE

We assume the likelihood to be a multivariate Gaussian

lnL( ®D |Θ) = −1
2
( ®D − ®T (Θ))T C−1

wPM ( ®D − ®T (Θ)) . (19)

Here ®D is the measured Wt (\) and F(\) datavector of length
#data (if we use all the angular and tomograhic bins), ®T is
the theoretical prediction for these statistics for the parameter
values given by Θ, and C−1

wPM is the inverse covariance matrix
of shape #data × #data (including modifications from the PM
marginalization term).
For our analysis we use the Polychord sampler with the

settings described in [72]. The samplers probe the posterior
(P(Θ| ®D)) which is given by:

P(Θ| ®D) = L(
®D |Θ)P(Θ)
P( ®D)

(20)
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where P(Θ) are the priors on the parameters of our model,
described in §IVA4, and P( ®D) is the evidence of data.
To estimate the constraints on the cosmological parameters,

we have to marginalize the posterior over all the rest of the
multi-dimensional parameter space. We quote the mean and
1f variance of the marginalized posteriors when quoting the
constraints. However, note that these marginalized constraints
can be biased if the posterior has significant non-Gaussianities,
particularly in the case of broad priors assigned to poorly
constrained parameters. The maximum-a-posteriori (MAP)
point is not affected by such "projection effects"; therefore,
we also show the MAP value in our plots. However, we note
that in high-dimensional parameter space with a non-trivial
structure, it is difficult to converge on a global maximum of
the whole posterior (also see Joachimi et al. [59] and citations
therein).

A. Analysis choices

In this subsection, we detail the galaxy bias models that we
use, describe the free parameters of our models, and choose
priors on those parameters.

1. PT Models

In this analysis, we test two different galaxy bias models:

1. Linear bias model: The simplest model to describe the
overdensity of galaxies, valid at large scales, assumes
it to be linearly biased with respect to the dark matter
overdensity (see §II A 1). In this model, for each lens
tomographic bin 9 , the average bias of galaxies is given
by a constant free parameter 1 91.

2. Non-linear bias model: To describe the clustering of
galaxies at smaller scales robustly, we also implement a
one–loop PT model. As described in §II A 1, in general,
this model has four free bias parameters for each lens
tomographic bin. For each tomographic bin 9 , we fix
three of the non-linear parameters to their co-evolution
value given by: 1 9s = (−4/7) (1 91 − 1) and 1 93nl = 1

9

1 − 1
[81, 95]. Therefore, in our implementation, we have two
free parameters for each tomographic bin: linear bias 1 91
and non-linear bias 1 92. This allows us to probe smaller
scales with minimal extra degrees of freedom, obtaining
tighter constraints on the cosmological parameters while
keeping the biases due to projection effects, as described
below, in control.
As we describe below, in order to test the robustness of
our model, we analyze the bias in the marginalized con-
straints on cosmological parameters. However, given
asymmetric non-Gaussian degeneracies between the pa-
rameters of the model (particularly between cosmolog-
ical parameters and poorly constrained non-linear bias
parameters 1 92 and intrinsic alignment parameters), the

marginalized constraints show projection effects. We
find that imposing priors on the non-linear bias model
parameters in combination with f8, as 1

9

1f8 and 1 92f
2
8

removes much of the posterior projection effect. As de-
tailed later, these parameters are sampledwith flat priors.
We emphasize that the flat priors imposed on these non-
linear combinations of parameters are non-informative,
and our final constraints on 1 91 and 1 92 are significantly
tighter than the projection of priors on these parameters.

2. Cosmological Models

We report the constraints on two choices of the cosmological
model:

1. Flat ΛCDM : We free six cosmological parameters the
total matter density Ωm, the baryonic density Ωb, the
spectral index =s, the Hubble parameter ℎ, the ampli-
tude of scalar perturbations �B and Ωaℎ2 (where Ωa
is the massive neutrino density). We assume a a flat
cosmological model, and hence the dark energy density,
ΩΛ, is fixed to be ΩΛ = 1 −Ωm.

2. Flat FCDM: In addition to the six parameters listed
above, we also free the dark energy equation of state
parameter F. Note that this parameter is constant in
time and F = −1 corresponds to ΛCDM cosmological
model.

3. Scale cuts

The complex astrophysics of galaxy formation, evolution,
and baryonic processes like feedback from active galactic nu-
clei (AGN), supernova explosions, and cooling make higher-
order non-linear contributions that we do not include in our
model. The contribution from these poorly understood effects
can exceed our statistical uncertainty on the smallest scales;
hence we apply scale cuts chosen so that our PT models give
unbiased cosmological constraints.
As mentioned earlier, marginalizing over a multi-

dimensional parameter space can lead to biased 2D parameter
constraints due to projection effects. To calibrate this effect
for each of our models, we first perform an analysis using a
baseline datavector constructed from the fiducial values of that
model. We then run our MCMC chain on the contaminated
datavector that includes higher-order non-linearities, and we
measure the bias between the peak of the marginalized base-
line contours and the peak of the marginalized contaminated
contours.
From a joint analysis of 3D galaxy-galaxy and galaxy-matter

correlation functions at fixed cosmology in simulations [87],
we find that the linear bias model is a good description above
8Mpc/ℎ while the two-parameter non-linear bias model de-
scribes the correlations above 4Mpc/ℎ. We convert these
physical co-moving distances to angular scale cuts for each
tomographic bin and treat them as starting guesses. Then for
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each model, we iterate over scale cuts until we find the mini-
mum scales at which the bias between marginalized baseline
and contaminated contours is less than 0.3f. For the ΛCDM
model, we impose this criterion on theΩm−(8 projected plane,
and for the FCDMmodel, we impose this criterion on all three
2D plane combinations constructed out of Ωm, (8 and F. Fur-
ther validation of these cuts is performed using simulations in
IVC and DeRose et al. [26].

4. Priors and Fiducial values

We use non-informative priors on the cosmological param-
eters to ensure statistically independent constraints on them.
Although our constraints on cosmological parameters like the
Hubble constant ℎ, spectral index =s and baryon fraction Ωb
are modest compared to surveys like Planck, we have verified
that our choice of wide priors does not bias the inference on
our cosmological parameters of interest, Ωm and (8.
When analyzing the linear bias model, we use a wide uni-

form prior on these linear bias parameters, given by 0.5 <

1
9

1 < 3. For the non-linear bias model, as mentioned above,
we sample the parameters 1 91f8 and 1

9

2f
2
8 . We use uninforma-

tive uniform priors on these parameters for each tomographic
bin 9 given by 0.67 < 1

9

1f8 < 3.0 and −4.2 < 1
9

2f
2
8 < 4.2.

At each point in the parameter space, we calculate f8 and
retrieve the bias parameters 1 91 and 1 92 from the sampled pa-
rameters to get the prediction from the theory model. The
fiducial values of the linear bias parameters 1 91 used in our
simulated likelihood tests are motivated by the recovered bias
values in N-body simulations and are summarized in Table I.
For the non-linear bias parameters, the fiducial values of 1 92
are obtained from the interpolated 11 − 12 relation extracted
from 3D tests in MICE simulations (see Fig. 8 of Pandey &
Krause et al., [87]) for the fiducial 1 91 for each tomographic
bin.

For the intrinsic alignment parameters, we again choose
uniform and uninformative priors. As the IA parameters are
directly dependent on the source galaxy population, it is chal-
lenging to motivate a reasonable choice of prior from other
studies. The fiducial values of these parameters required for
the simulated test are motivated by the Y1 analysis as detailed
in [96].

We impose an informative prior for our measurement sys-
tematics parameters, lens photo-I shift errors (ΔI 9g), lens
photo-I width errors (fI 9g), source photo-I shift errors (ΔI

9
s )

and shear calibration biases (< 9 ) for various tomographic
bins 8. The photo-I shift parameter changes the redshift
distributions for lenses (g) or sources (s) for any tomo-
graphic bin 9 , used in the theory predictions (see §II) as
=
9

g/s (I) −→ =
9

g/s (I −ΔI
9

g/s), while the photo-I width results in
=
9
g (I) −→ =

9
g (fI 9g [I − 〈I〉 9 ] + 〈I〉 9 ), where 〈I〉 9 is the mean

redshift of the tomographic bin 9 . Lastly, the shear calibration
uncertainity modifies the galaxy-galaxy lensing signal predic-
tion between lens bin 8 and source bin 9 as W8 9t −→ (1+< 9 )W8 9t .
For the source photo-I, we refer the reader to Myles, Alar-

con et al. [85] for the characterization of source redshift dis-
tribution, Gatti, Giannini et al. [44] for reducing the uncer-
tainity in these redshift distribution using cross-correlations
with spectroscopic galaxies and Cordero, Harrison et al. [19]
for a validation of the shift parameterization using a more
complete method based on sampling the discrete distribution
realizations. For the shear calibration biases, we refer the
reader to MacCrann et al. [78] which tests the shape measure-
ment pipeline and determine the shear calibration uncertainity
while accounting for effects like blending using state-of-art
image simulation suite. For the priors on the lens photo-I shift
and lens photo-I width errors, we refer the reader to Cawthon
et al. [16], which cross-correlated the DES lens samples with
spectroscopic galaxy samples from Sloan Digital Sky Survey
to calibrate the photometric redshifts of lenses (also see Porre-
don et al. [89] and Giannini et al. [46] for further details on
MagLim redshift calibration).

In this paper we fix the magnification coefficients to the
best-fit values described in Elvin-Poole, MacCrann et al.
[31], Krause et al. [64], but we refer the reader to Elvin-Poole,
MacCrann et al. [31] for details on the impact of varying
the magnification coefficients on the cosmological constraints.
Note that in our tests to obtain scale cuts for cosmological
analysis using simulated datavectors (described below), we re-
main conservative and fix the shear systematics to their fiducial
values and analyze the datavectors at the mean source redshift
distribution =s (I), as shown in Fig. 2.
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Model Parameter Prior Fiducial
Cosmology

Common
Parameters

Ωm U[0.1, 0.9] 0.3
�B × 10−9 U[0.5, 5] 2.19

Ωb U[0.03, 0.07] 0.048
=s U[0.87, 1.06] 0.97
ℎ U[0.55, 0.91] 0.69

Ωaℎ
2 × 10−4 U[6.0, 64.4] 8.3

Intrinsic Alignment
01 U[−5.0, 5.0] 0.7
02 U[−5.0, 5.0] -1.36
U1 U[−5.0, 5.0] -1.7
U2 U[−5.0, 5.0] -2.5
1ta U[0.0, 2.0] 1.0

Lens photo-I
ΔI1g G[0.006, 0.004] 0.0
ΔI2g G[0.001, 0.003] 0.0
ΔI3g G[0.004, 0.003] 0.0
ΔI4g G[−0.002, 0.005] 0.0
ΔI5g G[−0.007, 0.01] 0.0
fI5g G[1.23, 0.054] 1.0

Shear Calibration
<1 G[−0.0063, 0.0091] 0.0
<2 G[−0.0198, 0.0078] 0.0
<3 G[−0.0241, 0.0076] 0.0
<4 G[−0.0369, 0.0076] 0.0

Source photo-I
ΔI1s G[0.0, 0.018] 0.0
ΔI2s G[0.0, 0.015] 0.0
ΔI3s G[0.0, 0.011] 0.0
ΔI4s G[0.0, 0.017] 0.0

Point Mass
�8

8 ∈ [1, 5] G[0.0, 104] 0.0
Cosmology

FCDM F U[−2,−0.33] -1.0
Galaxy Bias

Linear
Bias

181
8 ∈ [1, 3] U[0.8, 3.0] 1.7

181
8 ∈ [4, 5] U[0.8, 3.0] 2.0

Galaxy Bias

Non-linear
Bias

181f8
8 ∈ [1, 3] U[0.67, 2.52] 1.42
181f8

8 ∈ [4, 5] U[0.67, 2.52] 1.68
182f

2
8

8 ∈ [1, 3] U[−3.5, 3.5] 0.16
182f

2
8

8 ∈ [4, 5] U[−3.5, 3.5] 0.35

Table I: The parameters varied in different models, their prior
range used (U[-,. ] ≡ Uniform prior between - and . ;
G[`, f] ≡Gaussian prior with mean ` and standard-deviation
f) in this analysis and the fiducial values used for simulated
likelihood tests.

B. Simulated Likelihood tests

We perform simulated likelihood tests to validate our
choices of scale cuts, galaxy bias model and the cosmological
model (including priors and external datasets when relevant).
In this analysis we focus on determining and validating the
scale cuts using redMaGiC lens galaxy sample and we refer the
reader to Porredon et al. [89] for validation using the MagLim
lens galaxy sample. We require that the choices adopted return
unbiased cosmological parameters. This first step based on the
tests on noiseless datavectors in the validation is followed by
tests on cosmological simulations.

1. Scale cuts for the linear bias model

Our baseline case assumes linear galaxy bias and no bary-
onic impact on the matter-matter power spectrum. We use
the linear bias values for the five lens bins (in order of in-
creasing redshift) 11 = 1.7, 1.7, 1.7, 2.0, and 2.0. We compare
the cosmology constraints from the baseline datavector with
a simulated datavector contaminated with contributions from
non-linear bias and baryonic physics. For non-linear bias, we
use the fiducial 1 92 values as described in the previous section
and fix the bias parameters 1 9B and 1

9

3nl to their co-evolution val-
ues. To capture the effect of baryons, we use the OWLS-AGN
datavector, which is based on hydrodynamical simulations that
include the effects of supernovae and AGN feedback, metal-
dependent radiative cooling, stellar evolution, and kinematic
stellar feedback [69].
Fig. 3 shows the 0.3f contours when implementing the an-

gular cuts corresponding to (8,6) Mpc/ℎ for F(\) and Wt. The
left panel is forΛCDM, and the right panel forFCDM(only the
F − Ωm plane is shown, but we also verified that the criterion
is satisfied in theΩm−(8 and (8−F planes). The figure shows
the peaks of marginalized contaminated and baseline posteri-
ors in 2D planes with blue and red markers respectively. We
find that a 0.24fmarginalized contaminated contour intersects
the peak of baseline marginalized posterior in ΛCDM model,
while same is true for a 0.05f contour in FCDM model.
Therefore, we find that for the linear bias model, (8,6) Mpc/ℎ
scale cuts pass the above-mentioned criteria that the distance
between the peaks of baseline and contaminated contours is
less than 0.3f.

C. Buzzard simulation tests

Finally, we validate our model with mock catalogs from cos-
mological simulations for analysis choice combinations that
pass the simulated likelihood tests. These tests, and tests of
cosmic shear and 3 × 2-point analyses, are presented in full in
DeRose et al. [26], and we summarize the details relevant for
2 × 2-point analyses here. We use the suite of Y3 Buzzard
simulations described above. We again require that our analy-
sis choices return unbiased cosmological parameters. In order
to reduce the sample variance, we analyze the mean datavector
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Figure 3. Simulated datavector parameter constraints from a datavector contaminated with non-linear bias + baryons but analyzed with a linear
bias + Halofit model. Dashed grey lines mark the truth values for the simulated datavector. The left panel shows contours for ΛCDM, and the
right panel shows FCDM. The scale cuts are (8,6) Mpc/ℎ for F(\) and Wt respectively. In both panels, we compare the peak of the marginalized
constraints in the 2D parameter plane for the contaminated datavector (blue circle) and the baseline datavector (red square). We see that the
distance between the peaks of marginalized baseline contours is within 0.3f of the marginalized contaminated contours, which is our criterion
for acceptable scale cuts.

constructed from 18 Buzzard realizations.

1. Validation of linear bias model

We have run simulated 2 × 2-point analyses on the mean
of the measurements from all 18 Buzzard simulations. We
compare our model for F(\) and Wt (\) to our measurements at
the true Buzzard cosmology, leaving only linear bias and lens
magnification coefficients free. In this case, we have ten free
parameters in total, and we find a chi-squared value of 13.6
for 285 data points using our fiducial scale cuts and assuming
the covariance of a single simulation, as appropriate for appli-
cation to the data. This analysis assumes true source redshift
distributions, and we fix the source redshift uncertainties to
zero as a conservative choice. This results in cosmological
constraints where the mean two-dimensional parameter biases
are 0.23f in the (8 − Ωm plane and 0.18f in the F − Ωm
plane. These biases are consistent with noise, as they have
an approximately 1/

√
18f error associated with them (assum-

ing 1f error from a single realization). We perform a simi-
lar analysis using calibrated photometric redshift distributions
where we use redMaGiC lens redshift distributions, and use
the SOMPZ redshift distribution estimates of source galaxies.
These are weighted by the likelihood of those samples given
the cross-correlation of our source galaxies with redMaGiC
and spectroscopic galaxies (we refer the reader to Appendix
F of DeRose et al. [26] for detailed procedure). This proce-
dure results in the mean two-dimensional parameter biases of
0.07f in the (8 −Ωm plane and 0.05f in the F −Ωm plane.

The left panels of Fig. 4 and Fig. 5 show the 0.3f constraints
obtained from analyzing linear galaxy bias models in ΛCDM

and FCDM cosmologies on the Buzzard datavector in blue
colored contours. Since we expect the marginalized posteriors
to be affected by the projection effects, we compare these
contours to a simulated noiseless baseline datavector obtained
at the input cosmology of Buzzard (denoted by gray dashed
lines in Fig. 4 and Fig. 5, also see DeRose & Wechsler et al.,
[25]). We find that similar to results obtained with simulated
datavectors in previous section, our parameter biases are less
than the threshold of 0.3f for the fiducial scale cuts. For amore
detailed discussion how these shift compare with probability
to exceed (PTE) values of exceeding a 0.3f bias, see Section
V of DeRose et al. [26].
Also note that as changing the input truth values of the

parameters impacts the shape of the multi-dimensional poste-
rior, we find that the effective magnitude and direction of the
projection effects of the baseline contours (comparison of red
contours in Fig. 3 with Fig. 4 and Fig. 5) are different.

2. Scale cuts for non-linear bias model

Likewise, we have run simulated 2×2-point analyses includ-
ing our non-linear biasmodel on themean of themeasurements
from all 18 simulations. Similar to the procedure used to deter-
mine the linear bias scale cuts in §IVB 1, we iterate over scale
cuts for each tomographic bin defined from varying physical
scale cuts.
We compare our model for F(\) and Wt (\) to our measure-

ments at the true Buzzard cosmology, leaving our bias model
parameters and magnification coefficients free, which adds 15
free parameters. We find a j2 value of 15.6 for 340 data
points using our non-linear bias scale cuts and assuming the
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covariance of a single simulation. Simulated analyses using
true redshift distributions result in cosmological constraints
where the associated mean two-dimensional parameter biases
for these analyses are 0.04f in the (8 − Ωm plane and 0.11f
in the F − Ω< plane. This is again consistent with noise due
to finite number of realizations.

In the right panel of Figure 4 we show the constraints on
Ωm and (8 from the mean Buzzard 2 × 2pt measurements
for ΛCDM cosmological model. The results for non-linear
bias models are shown, where we find, the criterion for un-
biased cosmology is satisfied for the choice of scale cuts of
(4,4)Mpc/ℎ for (F(\), Wt (\)) respectively. Again for a more
detailed discussion how these shift compare with PTE values
of exceeding a 0.3f bias, see DeRose et al. [26]. The Figure 5
shows the same analysis for FCDM cosmological model in the
Ωm and F plane, where we find similar results. We therefore
use (4,4)Mpc/ℎ as our validated scale cuts when analyzing data
with non-linear bias model.

V. RESULTS

In this section we present the 2 × 2pt cosmology results
using the DES Y3 redMaGiC lens galaxy sample and study the
implications of our constraints on galaxy bias.

A. redMaGiC cosmology constraints

In Fig. 6, we compare the constraints on the cosmological
parameters obtained from jointly analyzing F(\) and Wt (\)
with both linear and non-linear bias models. We find Ωm =

0.325+0.033
−0.034 from the linear bias model (a 10% constraint) at

the fiducial scale cuts of (8,6) Mpc/ℎ (for (F(\), Wt (\)) re-
spectively), while using the non-linear bias model at same
scale cuts gives completely consistent constraints. We also
show the results for the scale cuts of (4,4) Mpc/ℎ using the
non-linear bias model where we findΩm = 0.323+0.034

−0.035. These
marginalized constraints onΩm are completely consistent with
the public DES-Y1 2 × 2pt results [1] and Planck results (in-
cluding all three correlations between temperature and E-mode
polarization, see Aghanim et al. [3] for details).

With the analysis of linear bias model with (8,6) Mpc/ℎ
scale cuts (referred to as fiducial model in following text), we
find (8 = 0.668+0.026

−0.033. As is evident from the contour plot in
Fig. 6, our constraints prefer lower (8 compared to previous
analyses. We use the Monte-Carlo parameter difference distri-
bution methodology (as detailed in Lemos et al. [71]) to assess
the tension between our fiducial constraints and Planck results.
Using this criterion, we find a tension of 4.1f, largely driven
by the differences in the (8 parameter. We find similar con-
straints on (8 from the non-linear bias as well for both the
scale cuts. We investigate the cause of this low (8 value in the
following sub-sections.

Note that the non-linear bias model at (4,4) Mpc/ℎ scale
cuts results in tighter constraints in the Ωm − (8 plane. We
estimate the total constraining power in this Ωm − (8 plane
by estimating 2D figure-of-merit (FoM), which is defined as

FoM?1 , ?2 = 1/
√
(det Cov(?1, ?2)), for any two parameters

?1 and ?2 [56, 113]. This statistic here is proportional to
the inverse of the confidence region area in the 2D parameter
plane of Ωm − (8. We find that the non-linear bias model at
(4,4) Mpc/ℎ results in a 17% increase in constraining power
compared to the linear bias model at (8,6) Mpc/ℎ.

B. Comparison with MagLim results

In Fig. 7, we show the comparison of the cosmology con-
straints obtained from2×2pt analysis using the MagLim sample
(see Porredon et al. [89]) with the results obtained here with
the redMaGiC lens galaxy sample. The top panel compares
the Ωm − (8 contours assuming ΛCDM cosmology while the
bottom panel compares theΩm−F contours assuming FCDM
cosmology. We compare both the linear bias and the non-linear
bias model at the (8,6) Mpc/ℎ and (4,4) Mpc/ℎ scale cuts re-
spectively. We again find that the (8 constraints obtained with
the redMaGiC sample are low compared to the MagLim sam-
ple for both linear and non-linear bias models. As the source
galaxy sample, the measurement pipeline and the modeling
methodology used are the same for the two 2 × 2pt analysis,
this suggests that the preference for low (8 in our fiducial re-
sults is driven by the Y3 redMaGiC lens galaxy sample, which
we investigate in the following sub-sections.
In the bottom panel showing the FCDM cosmology con-

straints, we also show the maximum a posteriori (MAP) es-
timate in the Ωm − F plane, in order to estimate the projec-
tion effects arising from marginalizing over the large multi-
dimensional space to these two dimensional contours (see
Fig. 3 and Fig. 5). We find that the non-linear bias model
suffers from mild projection effects (although note the caveats
about the MAP estimator mentioned in §IV). We also empha-
size that using the non-linear galaxy bias model with smaller
scale cuts gives similar improvement in the figure-of-merit of
the cosmology contours shown in Fig. 7, using both redMaGiC
and MagLim lens galaxy samples.

C. Internal consistency of the redMaGiC results

To investigate the low (8 constraints in the fiducial analysis
of the redMaGiC galaxy sample, we first check various aspects
of the modeling pipeline. In Fig. 8, we show the constraints on
Ωm, (8 and galaxy bias for the third tomographic bin 13, for
various robustness tests. We choose to show the third tomo-
graphic bin for the galaxy bias constraints as this bin has the
highest signal-to-noise ratio. We divide the figure into three
parts, separated by horizontal black lines. The bottom panel
shows the marginalized constraints from the results described
in the previous subsection (see Fig. 6). As mentioned previ-
ously, we obtain completely consistent constraints from both
linear and non-linear bias models. To check the robustness and
keep the interpretation simple, we use the linear bias model
using the scale cuts of (8,6) Mpc/ℎ in the following variations.
In the next part of the Figure, moving upwards from the

bottom, we test the robustness of the model. In particular,
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Figure 4. The blue contours show constraints from Buzzard simulations (blue contours) compared with Buzzard -like theory datavector (red
contours) in the ΛCDM cosmological model. The left (right) panel shows the constraints for linear (non-linear) bias models with the scale cuts
given in the legend. The linear and non-linear bias values are extracted from fits to the 3D correlation functions (bgg and bgm). We see that
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Figure 5. Same as Fig. 4 but for FCDM cosmology.

we check the robustness of the fiducial intrinsic alignment
model by using the NLA model. We also run the analysis by
fixing the neutrino masses to Ωaℎ2 = 0.00083. This choice of
Ωaℎ

2 parameter corresponds to the sum of neutrino masses,∑
<a = 0.06eV at the fiducial cosmology described in Table I

(which is the baseline value used in thePlanck 2018 cosmology
results as well [3]). Lastly, we test the impact of varying the
dark energy parameter using the FCDM model. We find
entirely consistent constraints for all of the above variations.

In the next part of the figure, we test the internal consis-
tency of the datavector. Firstly we remove the contribution
of shear-ratio information to the total likelihood, resulting in
entirely consistent constraints. Also, note that the size of con-
straints on the cosmological parameters do not change in this
case compared to the fiducial results. This demonstrates that
the majority of constraints on the cosmological and bias pa-

rameters are obtained from the F(\) and Wt (\) themselves.
We also test the impact of removing one tomographic bin at
a time from the datavector. We find consistent constraints in
all five cases. Lastly, we also split the datavector into large
and small scales. The small-scales run uses the datavector be-
tween angular scales corresponding to (8,6)Mpc/ℎ and (30,30)
Mpc/ℎ. The large-scales run uses the datavector between an-
gular scales corresponding to (30,30) Mpc/ℎ and 250 arcmins.
When analyzing the large scales, we fix the point-mass pa-
rameters to their fiducial values (see Table I), because of the
large degradation of constraining power at these larger-scale
cuts due to the degeneracy between point-mass parameters,
galaxy bias and cosmological parameter f8 (see Appendix A
and MacCrann et al. [79]). In both of these cases, we find
similar constraints on all parameters, demonstrating that the
low (8 does not originate from either large or small scales.
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Figure 6. Comparison of the 2 × 2pt ΛCDM constraints, using red-
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models at their respectively defined scale cuts given in the legend.
We find a preference for a low value of (8, compared to DES Y1
2 × 2pt public result [1] and Planck 2018 public result [3], with both
models of galaxy bias which we investigate in §VC. We also show
that analyzing smaller scales using the non-linear galaxy bias model
leads to 17% better constraints in the Ωm − (8 plane.

As an additional test of the robustness of the modeling
pipeline, we analyze the F(\) and Wt (\) measurements as
measured from DES Y1 data [1]. Note that in this analysis, we
keep the same scale cuts as described and validated in Abbott
et al. [1], which are 8 Mpc/ℎ for F(\) and 12 Mpc/ℎ for Wt (\).
To analyze this datavector, while we use the model described
in this paper, we fix the point-mass parameters again to zero
due to similar reasons as described above in the analysis of
large scales. The constraints we obtain are consistent with the
public results described in Abbott et al. [1]. We attribute an
approximately 1f shift in the marginalized Ωm posterior to
the improvements made in the current model, compared to the
model used for the public Y1 results [63]. In particular, we
use the full non-limber calculation for galaxy clustering and
use the TATT model of intrinsic alignment in the model of
galaxy-galaxy lensing (also see Fang et al. [35]).

Lastly, to assess the impact of projection effects on the (8 pa-
rameter, we compare the profile posterior to the marginalized
posterior. The profile posterior in Fig. 9 is obtained by divid-
ing the samples into 20 bins of (8 values and calculating the
maximum posterior value for each bin. Therefore, unlike the
marginalized posterior, the profile posterior does not involve
the projection of a high dimensional posterior to a single (8
parameter. Hence the histogram of the profile posterior is not
impacted by projection effects. We compare the marginalized
posterior and profile posterior in Fig. 9, demonstrating that
projection effects do not impact the inferred (8 constraints
from the marginalized posterior.

In summary, the results presented in this sub-section demon-
strate that our modeling methodology is entirely robust, and
hence we believe our data are driving the low (8 constraints
with the redMaGiC sample. Moreover, as described above, no
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Figure 7. Comparing the constraints from 2 × 2pt between the red-
MaGiC and Maglim samples. The black dot and blue star denote the
MAP point estimate for redMaGiC linear and non-linear bias model
respectively, while the gray triangle and red square show the same for
the MagLim sample.

individual part of the data drives a low value of (8; therefore,
we perform global checks of the datavector in the following
sub-sections.

D. Galaxy bias from individual probes

In this sub-section, we test the compatibility of the F(\)
and Wt (\) parts of the datavector. As we will lose the power
of complementarity when analyzing them individually, we fix
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Figure 8. The consistency of the redMaGiC 2 × 2pt cosmology and galaxy bias constraints when changing the analysis choices (see §VC for
details). We also compare our constraints to the DES Y1 public 2×2pt results as well as its re-analysis with the current analysis pipeline (∗ – we
fix the point mass parameters when re-analyzing the DES Y1 data due to the large degeneracy between point mass parameters and cosmology
at the scale cuts described and validated in Abbott et al. [1]).

the cosmological parameters to the maximum posterior ob-
tained from the DES Y1 3 × 2pt analysis [1]. We find that
the best-fit bias values from the F(\) part of the datavector are
systematically higher than Wt (\) for each tomographic bin. We
parameterize this difference in bias values with a phenomeno-
logical parameter - for each tomographic bin 8 as:

- 8lens = 1
8
Wt (\)/1

8
F (\) (21)

We refer to - as a "decorrelation parameter" because its effect
on the data is very similar to assuming that themass and galaxy
density functions have less than 100% correlation. A value of
- = 1 is expected from local biasing models. The constraints
on the parameter - 8lens are shown in Fig. 10. We also compare
the constraints of these - 8lens parameters obtained from Y1
redMaGiC 2 × 2pt (see Abbott & Abdalla et al., [1] and Prat
& Sánchez et al., [91] for details) and the 2 × 2pt datavector

using Y3 MagLim lens galaxy sample. For the Y1 redMaGiC
datavector, we fix the scale cuts and priors on the calibration of
photometric redshifts of lens and source galaxies as described
in theAbbott et al. [1] and for analysis ofY3 MagLim datavector
we follow the analysis choices detailed in Porredon et al. [89].
In this analysis of all the datavectors, we use the linear bias
galaxy bias model while keeping the rest of themodel the same
as described in §II B. We find that the Y1 redMaGiC as well
as Y3 MagLim 2× 2pt data are consistent with - 8lens = 1 for all
the tomographic bins, while redMaGiC Y3 2 × 2pt data have
a persistent preference for - 8lens < 1 for all the tomographic
bins.

Noticeably, we find that for the DES Y1 best-fit cosmolog-
ical parameters, the Y3 redMaGiC datavector prefers a value
of - 8lens ∼ 0.9 for each tomographic bin. Therefore, in order
to keep the interpretation simple, we use a single parameter
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Figure 9. Comparison of the profile posterior and marginalized pos-
terior on the (8 parameter from the 2 × 2pt redMaGiC LCDM chain.

-lens to describe the ratio of galaxy bias 18
Wt (\)/1

8
F (\) for all

tomographic bins 8 ∈ [1, 5]. We constrain this single redshift-
independent parameter to be -lens = 0.9+0.03

−0.03 for Y3 redMaGiC
, a 3.5f deviation from -lens = 1. Within general relativity,
even when including the impact of non-linear astrophysics, we
do not expect a de-correlation between galaxy clustering and
galaxy-galaxy lensing to be present at more than a few percent
level [28]. We comment on the impact of this de-correlation
on the redMaGiC cosmology constraints in §VF.
Note that the inferred value of -lens depends on the cos-

mological parameters, because the large-scale amplitudes of
galaxy clustering and galaxy-galaxy lensing involve different
combinations of galaxy bias, f8 and Ωm. Therefore, a self-
consistent inference of -lens requires the full 3×2pt datavector
and is presented inDESCollaboration [23]. However, theDES
Y1 3 × 2pt best-fit cosmological parameters are fairly close to
the DES Y3 3 × 2pt best-fit parameters, therefore we expect
the results presented here to be good approximations to those
obtained with the Y3 3 × 2pt datavector.

E. Area split of the de-correlation parameter

In order to further study the properties of this de-correlation
parameter -lens, we estimate it independently in 10 approx-
imately equal area patches of the DES Y3 footprint. We
measure the datavectors, F(\) and Wt (\) in each of these 10
patches, using the same methodology presented in §III C 4. In
order to obtain the covariance for each patch, we rescale the
fiducial covariance (see §III D) of the full footprint to the area
of each patch. We then estimate -lens from each patch while
keeping all the other analysis choices the same.

In Fig. 11 we show the DES footprint split into 10 regions.
In this figure, each region is colored in proportion to the mean
value of the -lens parameter we obtain using redMaGiC as the
lens galaxy sample. We run a similar analysis when using
MagLim as the lens sample.
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Figure 10. Constraints on the phenomenological de-correlation pa-
rameter, -lens, for each tomographic bin obtained from2×2pt analysis
using Y1 and Y3 redMaGiC and Y3 MagLim as the lens galaxies (the
cosmological parameters are fixed to the DES Y1 best-fit values [1]).

Number of regions =10

0.645454 1.08742

Figure 11. The DES footprint split into 10 regions. The color of each
area corresponds to the mean value of the constraints on -lens from
that particular area, using the redMaGiC lens sample.

In Fig. 12 we show a scatter plot between the value of
-lens recovered from each of 10 regions using redMaGiC and
MagLim as lens samples. We find a tight correlation between
the value of -lens from the two lens samples. This shows
that, compared with MagLim , the redMaGiC lens sample has
a preference for -lens < 1 in the whole DES footprint. Fig. 12
also suggests a large variation in the inferred -lens over the
footprint, when compared to MagLim . This correlation and
area independence of the ratio -Redmagic/-Maglim is remarkable
and suggests that the potential systematic in the redMaGiC
sample has a more global origin.

F. Impact of de-correlation on 2 × 2pt cosmology

To summarize, assuming a standard cosmological model,
we have identified that the galaxy-clustering and galaxy-galaxy
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constraints on -lens from each of the 10 regions (see Fig. 11), using
either redMaGiC or MagLim lens galaxy sample. The blue errorbar
corresponds to the constraints on -lens from the full Y3 area. We find
a tight correlation between -Redmagic and -Maglim.
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Figure 13. Comparison of the constraints from 2× 2pt analysis when
using the mean value of -lens parameter for redMaGiC lens sample
analysis, as estimated and described in DES Collaboration [23]. We
find a shift in (8 parameter compared to our fiducial results in §VA,
but Ωm constraints are fully consistent.

lensing signal measured using the Y3 redMaGiC lens galaxy
sample are incompatible with each other (at the set of cos-
mological parameters preferred by previous studies). We have
further identified that this incompatibility is well-captured by a
redshift-, scale- and area-independent phenomenological pa-
rameter -lens. Using Y3 redMaGiC lens sample, we detect
-lens ∼ 0.9, at the 3.5f confidence level away from the ex-
pected value of -lens = 1. This 2 × 2pt analysis is done when
the cosmological parameters are fixed to their DES Y1 best-fit
values; a self-consistent -lens inference analysis with free cos-
mological parameters requires the full 3×2pt datavector. This
is presented inDESCollaboration [23], where the inferred con-

straints on this de-correlation parameter are -lens = 0.87+0.02
−0.02.

In Fig. 13, we fix -lens = 0.87 in ourmodel and re-run theY3
redMaGiC 2× 2pt analysis. We find, as expected, that this has
a significant impact on the marginalized (8 values and results
in the marginalized constraints (8 = 0.76+0.034

−0.037, completely
consistent with 2 × 2pt Y1 redMaGiC public results as well as
Y3 MagLim results. Also note that themarginalized constraints
on Ωm for -lens = 0.87 model are Ωm = 0.331+0.037

−0.037, which
remains consistent with the fiducial result.

G. redMaGiC host halo mass inference

In the halo model framework (see [18] for a review), the
value of the linear bias of a tracer of dark matter can be
related to the host halo mass of that tracer. The standard
halo occupation distribution (HOD) approach parameterizes
the distribution of galaxies inside halos, and hence the ob-
served number density as well as the large scale bias values
of any galaxy sample can be expressed in terms of its HOD
parameters [8, 119, 120]. The same HOD parameters can also
be used to infer the mean host halo mass of the galaxy sample.
We use the constraints on linear galaxy bias and the co-moving
number density to infer the mean host halo mass of the red-
MaGiC galaxy sample by marginalizing over HOD parameters.
We use the linear bias constraints from the 2 × 2pt Y3 red-
MaGiC analysis after fixing -lens = 0.87. This de-correlation
parameter results inF(\) and Wt preferring different linear bias
parameters, related by 18 (F(\))/18 (Wt (\)) = -lens = 0.87, for
all tomographic bins 8. Therefore, we infer the host halomasses
using both linear bias parameter values.

The details of the halo model framework used here are given
in Appendix C. Note that we have neglected the effects of
assembly bias and the correlation between number density and
bias constraints in this analysis. With these caveats in mind,
in Fig. 14 we show approximately 25% constraints on mean
host halo mass of redMaGiC galaxies and the constraints for
different tomographic bins show its evolution with redshift.
This redshift evolution trend is broadly consistent with the
pseudo-evolution of halo masses due to changing background
reference density with redshift (see [29] for more details).
Therefore we find that the DES Y3 redMaGiC sample lives
in halos of mass of approximately 1.6 × 1013"�/ℎ, which
remains broadly constant with redshift. We find that our results
are broadly consistent with the analysis of [17], which used the
redMaGiC galaxies of DES Science-Verification dataset and
estimated the mean halo masses by studying galaxy-galaxy
lensing signal in a broad range of scales (including high signal-
to-noise small scales that we remove here) using HODmodel.4
We also find broad agreement with a similar study presented in

4 Note that we use "200c as our halo mass definition, which denotes the
total mass within a sphere enclosing a mean density which is 200 times the
critical density of the universe. Clampitt et al. [17] work with "200m as
their mass definition, denoting the total mass within a sphere enclosing a
mean density which is 200 times themean density of the universe, therefore
we convert their constraints to "200c in the above figure.
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Figure 14. This figure shows the inferred constraints on mean host
halo masses of redMaGiC galaxies for five tomographic bins. We use
the HOD framework to make this inference as detailed in Appendix
C and use the bias constraints from a linear bias model 2× 2pt chain,
fixing -lens = 0.87. We infer the mean host halo masses from the
linear bias constraints, 18 (F(\)) and 18 (Wt (\)), where they are related
as 18 (F(\)/18 (Wt (\) = -lens = 0.87 for all the five tomographic bins
8. We compare our results to Clampitt et al. [17] and also show the
expected pseudo-evolution of a halo having"halo = 1.6×1013"�/ℎ
at I = 0.

Zacharegkas, G. et al. [118], analyzing DES Y3 galaxy-galaxy
lensing data on a wide range of scales with an improved halo
model.

VI. CONCLUSIONS

This paper has presented the cosmological analysis of the 2×
2pt datavector of the DES Year 3 dataset using redMaGiC lens
sample. We refer the reader to Porredon et al. [89] for similar
results using MagLim lens sample and Elvin-Poole, MacCrann
et al. [31] for details on the impact of lens magnification on the
2×2pt datavector. The 2×2pt datavector comprises the 2-point
correlations of galaxy clustering and galaxy lensing using five
redshift bins for the lens galaxies and four bins for source
galaxies. It provides independent constraints on two primary
parameters of interest, the mass density Ωm and amplitude
of fluctuations (8. As shown in Fig. 1, these constraints are
complementary to those from cosmic shear. The combination
of 2 × 2pt with cosmic shear is thus better able to constrain
Ωm, (8 as well as the dark energy equation of state parameter
F. Perhaps more importantly, this provides a robustness check
on the results from either approach.

The estimation and marginalization of galaxy bias parame-
ters is one of the central tasks in extracting cosmology from
the 2 × 2pt datavector. We have developed and validated the
methodology for this based on perturbation theory. We use
a five-parameter description of galaxy bias per redshift bin,
with three of the parameters fixed based on theoretical con-
siderations. We validated these choices using mock catalogs

built on N-body simulations as detailed in our earlier study
[87] and Section §IVC. We carry out two analyses: the first
using linear bias with more conservative scale cuts, and the
second using the full PT bias model going down to smaller
scales. Other elements of our model include intrinsic align-
ments, magnification and “point mass marginalization” (see
§II B). The validation of the analysis choice and scale cuts
with simulated datavectors (both idealized and frommock cat-
alogs) are presented in §IVA.
Our cosmological results are presented in Figs. 6, 7 and 8,

which show preference for low value of (8 parameter when
compared with previous results. We refer the reader to DES
Collaboration [23], where, after unblinding the cosmological
parameter constraints, we find similar inconsistency in the (8
parameter constraints between Y3 2 × 2pt redMaGiC analysis
and Y3 cosmic shear analysis, as well as a high j2 using
the ΛCDM model. As detailed in DES Collaboration [23],
we discovered that the reason for the high j2 of the 3 × 2pt
analysis with the fiducial model was due to inconsistencies in
the galaxy-galaxy lensing and galaxy clustering signals. The
source of this inconsistency is still undetermined, however
we found that a single parameter -lens, representing the ratio
of the bias inferred from F(\) and Wt, substantially improves
the goodness of fit. This ratio is cosmology-dependent and
can only be inferred consistently (along with the other model
parameters) when using the full 3 × 2pt analysis, presented in
DES Collaboration [23].
This ratio is expected to be unity in the absence of galaxy

stochasticity, an effect that is expected to be only at the percent
level on scales above∼ 10Mpc [28]. Several previous analyses
with similar datasets have also found this ratio to be consistent
with unity [14, 80, 91]. However, we detect a value of -lens =
0.87, below 1 at the 5-f level. This purely phenomenological
model assumes no scale or redshift dependence, and we found
consistent values of -lens when fitting to different scales (see
Fig. 8) and when fitting separate values for each lens redshift
bin (see Fig. 10). Since no known cosmological effect can
produce such a large and coherent deviation in clustering and
galaxy lensing, we pursued possible systematic errors that
could lead to this unusual result. We were unable to verify any
such systematics yet, and this is a work in progress. Note that
this kind of behavior can arise with potential systematics, for
example unaccounted-for impact of photometric uncertainty or
background subtraction for large or faint objects on the galaxy
selection. This can introduce extra fluctuation of the number
density of the lens galaxies across the footprint which will not
be captured by the set of survey property maps used in the LSS
weights estimation pipeline.

We note that although recent analyses using BOSS galaxies
have found similar inconsistencies in the galaxy clustering and
galaxy-galaxy lensing (see [68, 70] and references there-in);
there are some important differences. In this analysis as well
as in DES Collaboration [23], unlike in Leauthaud et al. [70],
we do not use any small scale information for galaxy clus-
tering and galaxy-galaxy lensing measurements. Therefore,
we are significantly less prone to the impacts of poorly un-
derstood small scale non-linear physics, like baryon feedback
and galaxy assembly biases [4, 117, 121]. Moreover, in DES
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Collaboration [23], by leveraging all the three two-point func-
tions used in 3 × 2pt, the analysis of the consistency between
galaxy-lensing and galaxy-clustering can be carried out while
freeing the relevant cosmological parameters. The analysis
in this paper fixes the cosmological parameters close to the
best-fit cosmology from DES Collaboration [23], hence our
results are a good approximation to the analysis using the full
3 × 2pt datavector. Similarly, a few recent studies jointly an-
alyzing galaxy clustering auto-correlations and galaxy-CMB
lensing cross-correlations have also reported preference for
lower galaxy bias value for the cross-correlation compared to
the auto correlations [48, 60]. However similar to above anal-
ysis with BOSS galaxies, these studies also fix their cosmolog-
ical parameters to the best-fit cosmology from Planck results
[3], which is different from this study (see [65] for related
discussion).

Fig. 13 shows the 2 × 2pt redMaGiC cosmology constraints
after fixing -lens = 0.87, the best fit value from DES Collabo-
ration [23]. There is a significant shift in (8, whileΩm remains
stable. Interestingly the resulting contours are fully consistent
with the Y1 analysis as well as the 2 × 2pt analysis using the
MagLim lens galaxy sample [89].

To access the information in the measurements on smaller
scales, we use higher-order perturbation theory. We use a
hybrid 1-loop perturbation theory model for galaxy bias, cap-
turing the non-linear contributions to the overdensity field till
third order. We have tested and validated our model using 3-
dimensional correlation functions from DES-mock catalogs in
Pandey et al. [87] as well as with projected statistics in DeRose
et al. [26]; in this study, we validate the bias model with mocks
for the 2 × 2pt redMaGiC datavector at scales above 4Mpc/ℎ.
This validation presented here, along with results in Pandey
et al. [87], are then also directly used to validate non-linear bias
model for MagLim datavector. We apply it to the data and find
that the non-linear bias model results in a gain in constraining
power of approximately 17% in the Ωm − (8 parameter plane.

A different approach, the halo occupation distribution in
the halo model, enables a connection between the masses of
halos in which galaxies live and their large-scale bias. We
use our constraints on linear bias parameters (along with the
galaxy number density) and estimate the host halo masses of
redMaGiC galaxies. We marginalize over the halo occupa-
tion distribution parameters and obtain 25% constraints on the
mean mass of host halos. We show these constraints, includ-
ing its evolution with redshift in Fig. 14, finding halo mass of
approximately 1.5× 1013"�/ℎ and its evolution with redshift
consistent with the expected pseudo-evolution due to changing
background density.

The 2 × 2pt combination of probes plays a crucial role in
extracting the most cosmological information from LSS sur-
veys, especially in constraining the matter content of universe
(Ωm) and the dark energy equation of state (F). In this analysis
we measure the combination of galaxy clustering and galaxy-
galaxy lensing at approximately 200f; this significance is
expected to dramatically increase with imminent large scale

surveys like the Euclid Space Telescope5, the Dark Energy
Spectroscopic Instrument6, the Nancy G. Roman Space Tele-
scope7 and the Vera C. Rubin Observatory Legacy Survey of
Space and Time.8 In order to optimally analyze these high
precision measurements, especially at non-linear small scales,
we need better models and ensure their proper validation be-
fore applying them to measurements. We have shown that
the hybrid perturbation theory galaxy bias model can be val-
idated with simulations to sufficient accuracy for the present
analysis. By relaxing the priors on all five parameters (per
redshift bin), the model’s accuracy can be improved though
the increase in model complexity poses other challenges in
parameter estimation. Finally, and perhaps most importantly,
we have highlighted how understanding potential sources of
systematic uncertainty is of paramount importance for extract-
ing unbiased cosmological information in this era of precision
cosmology.

ACKNOWLEDGEMENTS

EK is supported by the Department of Energy grant DE-
SC0020247 and the David & Lucile Packard Foundation. SP
and BJ are supported in part by the US Department of En-
ergy Grant No. DE-SC0007901 and NASA ATP Grant No.
NNH17ZDA001N.
Funding for the DES Projects has been provided by the U.S.

Department of Energy, the U.S. National Science Foundation,
the Ministry of Science and Education of Spain, the Science
and Technology Facilities Council of the United Kingdom, the
Higher Education Funding Council for England, the National
Center for Supercomputing Applications at the University of
Illinois at Urbana-Champaign, the Kavli Institute of Cosmo-
logical Physics at the University of Chicago, the Center for
Cosmology and Astro-Particle Physics at the Ohio State Uni-
versity, the Mitchell Institute for Fundamental Physics and
Astronomy at Texas A&M University, Financiadora de Estu-
dos e Projetos, Fundação Carlos Chagas Filho de Amparo à
Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de
Desenvolvimento Científico e Tecnológico and the Ministério
da Ciência, Tecnologia e Inovação, the Deutsche Forschungs-
gemeinschaft and the Collaborating Institutions in the Dark
Energy Survey.
The Collaborating Institutions are Argonne National Lab-

oratory, the University of California at Santa Cruz, the Uni-
versity of Cambridge, Centro de Investigaciones Energéticas,
Medioambientales y Tecnológicas-Madrid, the University of
Chicago, University College London, the DES-Brazil Consor-
tium, the University of Edinburgh, the Eidgenössische Tech-
nische Hochschule (ETH) Zürich, Fermi National Accelerator
Laboratory, the University of Illinois at Urbana-Champaign,
the Institut de Ciències de l’Espai (IEEC/CSIC), the Institut

5 https://www.euclid-ec.org
6 https://www.desi.lbl.gov
7 https://roman.gsfc.nasa.gov
8 https://www.lsst.org



23

de Física d’Altes Energies, Lawrence Berkeley National Lab-
oratory, the Ludwig-Maximilians Universität München and
the associated Excellence Cluster Universe, the University of
Michigan, the National Optical Astronomy Observatory, the
University of Nottingham, The Ohio State University, the Uni-
versity of Pennsylvania, the University of Portsmouth, SLAC
National Accelerator Laboratory, Stanford University, the Uni-
versity of Sussex, Texas A&M University, and the OzDES
Membership Consortium.

The DES data management system is supported by the
National Science Foundation under Grant Numbers AST-
1138766 and AST-1536171. The DES participants from
Spanish institutions are partially supported by MINECO
under grants AYA2015-71825, ESP2015-88861, FPA2015-
68048, SEV-2012-0234, SEV-2016-0597, and MDM-2015-
0509, some of which include ERDF funds from the Euro-
pean Union. IFAE is partially funded by the CERCA pro-
gram of the Generalitat de Catalunya. Research leading to
these results has received funding from the European Re-
search Council under the European Union’s Seventh Frame-
work Program (FP7/2007-2013) including ERC grant agree-

ments 240672, 291329, and 306478. We acknowledge support
from the Australian Research Council Centre of Excellence for
All-sky Astrophysics (CAASTRO), through project number
CE110001020.
This manuscript has been authored by Fermi Research Al-

liance, LLC under Contract No. DE-AC02-07CH11359 with
the U.S. Department of Energy, Office of Science, Office of
High Energy Physics. The United States Government retains
and the publisher, by accepting the article for publication, ac-
knowledges that the United States Government retains a non-
exclusive, paid-up, irrevocable, world-wide license to publish
or reproduce the published form of this manuscript, or allow
others to do so, for United States Government purposes.
Based in part on observations at Cerro Tololo Inter-

American Observatory, National Optical Astronomy Obser-
vatory, which is operated by the Association of Universities
for Research inAstronomy (AURA) under a cooperative agree-
ment with the National Science Foundation.
The analysis made use of the software tools SciPy [112],

NumPy [49], Matplotlib [55], CAMB [53, 74, 75], Get-
Dist [73], Multinest [36–38], Polychord [47], Cosmo-
SIS [122], Cosmolike [62] and TreeCorr [57].

[1] Abbott T., et al. 2018, Physical Review D, 98
[2] Abbott T., et al. 2020, Physical Review D, 102
[3] Aghanim N., et al. 2020, Astronomy & Astrophysics, 641, A6
[4] Amodeo S., et al. 2021, Physical Review D, 103
[5] Amon A., et al., 2021, To be submitted to PRD
[6] Baldauf T., et al. 2010, Physical Review D, 81
[7] Becker M. R., 2013, MNRAS, 435, 115
[8] Berlind A. A., Weinberg D. H., 2002, The Astrophysical Jour-

nal, 575, 587–616
[9] Bird S., Viel M., Haehnelt M. G., 2012, MNRAS, 420, 2551
[10] Blazek J., Vlah Z., Seljak U., 2015, Journal of Cosmology and

Astroparticle Physics, 2015, 015–015
[11] Blazek J. A., et al. 2019, Physical Review D, 100
[12] Bridle S. L., et al. 2002, Monthly Notices of the Royal Astro-

nomical Society, 335, 1193–1200
[13] Cacciato M., et al. 2009, Monthly Notices of the Royal Astro-

nomical Society, 394, 929–946
[14] Cacciato M., et al. 2012, Monthly Notices of the Royal Astro-

nomical Society, 426, 566–587
[15] Cacciato M., et al. 2013, Monthly Notices of the Royal Astro-

nomical Society, 430, 767–786
[16] Cawthon R., et al., 2020, Submitted to MNRAS
[17] Clampitt J., et al. 2016, Monthly Notices of the Royal Astro-

nomical Society, 465, 4204–4218
[18] Cooray A., Sheth R., 2002, Physics Reports, 372, 1–129
[19] Cordero J. P., Harrison I., et al., 2021, To be submitted to

MNRAS
[20] Coupon J., et al. 2015, Monthly Notices of the Royal Astro-

nomical Society, 449, 1352–1379
[21] Crocce M., Pueblas S., Scoccimarro R., 2012, 2LPTIC:

2nd-order Lagrangian Perturbation Theory Initial Conditions
(ascl:1201.005)

[22] Crocce M., et al. 2015, Monthly Notices of the Royal Astro-
nomical Society, 453, 1513–1530

[23] DES Collaboration 2021, To be submitted to PRD

[24] De Vicente J., Sánchez E., Sevilla-Noarbe I., 2016, MNRAS,
459, 3078

[25] DeRose J., et al. 2019, arXiv e-prints,
[26] DeRose J., et al., 2021a, To be submitted to MNRAS
[27] DeRose J., Becker M. R., Wechsler R. H., 2021b, arXiv e-

prints, p. arXiv:2105.12104
[28] Desjacques V., Jeong D., Schmidt F., 2018, Physics Reports,

733, 1–193
[29] Diemer B., More S., Kravtsov A. V., 2013, The Astrophysical

Journal, 766, 25
[30] Dvornik A., et al. 2018, Monthly Notices of the Royal Astro-

nomical Society, 479, 1240–1259
[31] Elvin-Poole J., MacCrann N., et al., 2021, To be submitted to

MNRAS
[32] Everett S., et al., 2020a, Submitted to ApJS
[33] Everett S., et al. 2020b, Dark Energy Survey Year 3 Re-

sults: Measuring the Survey Transfer Function with Balrog
(arXiv:2012.12825)

[34] Fang X., Eifler T., Krause E., 2020a, arXiv e-prints, p.
arXiv:2004.04833

[35] Fang X., et al. 2020b, JCAP, 2020, 010
[36] Feroz F., Hobson M. P., 2008, Monthly Notices of the Royal

Astronomical Society, 384, 449–463
[37] Feroz F., Hobson M. P., Bridges M., 2009, Monthly Notices of

the Royal Astronomical Society, 398, 1601–1614
[38] Feroz F., et al. 2019, The Open Journal of Astrophysics, 2
[39] Flaugher B., et al. 2015, The Astronomical Journal, 150, 150
[40] Fosalba P., et al. 2014, Monthly Notices of the Royal Astro-

nomical Society, 447, 1319–1332
[41] Fosalba P., et al. 2015, Monthly Notices of the Royal Astro-

nomical Society, 448, 2987–3000
[42] Friedrich O., et al., 2020, Submitted to MNRAS
[43] Fry J. N., Gaztanaga E., 1993, ApJ, 413, 447
[44] Gatti M., Giannini G., et al., 2020, Submitted to MNRAS
[45] Gatti M., Sheldon E., et al., 2021, Mon. Not. Roy. Astron. Soc.,



24

504, 4312
[46] Giannini G., et al., 2021, To be submitted to PRD
[47] Handley W. J., Hobson M. P., Lasenby A. N., 2015, Monthly

Notices of the Royal Astronomical Society: Letters, 450,
L61–L65

[48] Hang Q., et al. 2020, Monthly Notices of the Royal Astronom-
ical Society, 501, 1481–1498

[49] Harris C. R., et al. 2020, Nature, 585, 357–362
[50] Hartley W. G., Choi A., et al., 2020, Submitted to MNRAS
[51] Heymans C., et al. 2021, Astronomy & Astrophysics, 646,

A140
[52] Hikage C., et al. 2019, Publications of the Astronomical Soci-

ety of Japan, 71
[53] Howlett C., et al. 2012, JCAP, 1204, 027
[54] Huff E., Mandelbaum R., 2017, Metacalibration: Di-

rect Self-Calibration of Biases in Shear Measurement
(arXiv:1702.02600)

[55] Hunter J. D., 2007, Computing in Science Engineering, 9, 90
[56] Huterer D., Turner M. S., 2001, Physical Review D, 64
[57] Jarvis M., Bernstein G., Jain B., 2004, Monthly Notices of the

Royal Astronomical Society, 352, 338–352
[58] Jarvis M., et al., 2021, Mon. Not. Roy. Astron. Soc., 501, 1282
[59] Joachimi B., et al. 2021, Astronomy & Astrophysics, 646,

A129
[60] Kitanidis E., White M., 2020, Monthly Notices of the Royal

Astronomical Society, 501, 6181–6198
[61] Krause E., Eifler T., 2017a, Mon. Not. Roy. Astron. Soc., 470,

2100
[62] Krause E., Eifler T., 2017b, Monthly Notices of the Royal

Astronomical Society, 470, 2100–2112
[63] Krause E., et al. 2017, preprint, (arXiv:1706.09359)
[64] Krause E., et al., 2021, To be submitted to PRD
[65] Krolewski A., Ferraro S., White M., 2021, Cosmological con-

straints from unWISE and Planck CMB lensing tomography
(arXiv:2105.03421)

[66] Kwan J., et al. 2016, Monthly Notices of the Royal Astronom-
ical Society, 464, 4045–4062

[67] Landy S. D., Szalay A. S., 1993, ApJ, 412, 64
[68] Lange J. U., et al. 2021, Monthly Notices of the Royal Astro-

nomical Society, 502, 2074–2086
[69] Le Brun A. M. C., et al. 2014, Monthly Notices of the Royal

Astronomical Society, 441, 1270–1290
[70] Leauthaud A., et al. 2017, Monthly Notices of the Royal As-

tronomical Society, 467, 3024–3047
[71] Lemos P. Raveri M., et al., 2020, Submitted to MNRAS
[72] Lemos P., et al., 2021, To be submitted to MNRAS
[73] Lewis A., 2019
[74] Lewis A., Bridle S., 2002, Phys. Rev. D, 66, 103511
[75] Lewis A., Challinor A., Lasenby A., 2000, ApJ, 538, 473
[76] Limber D. N., 1953, ApJ, 117, 134
[77] LoVerde M., Afshordi N., 2008, Phys. Rev. D, 78, 123506
[78] MacCrann N., et al., 2020a, Submitted to MNRAS
[79] MacCrann N., et al. 2020b, Mon. Not. Roy. Astron. Soc., 491,

5498
[80] Mandelbaum R., et al. 2013, Monthly Notices of the Royal

Astronomical Society, 432, 1544–1575
[81] McDonald P., Roy A., 2009, Journal of Cosmology and As-

troparticle Physics, 2009, 020
[82] More S., et al. 2015, The Astrophysical Journal, 806, 2
[83] Morganson E., et al. 2018a, Publications of the Astronomical

Society of the Pacific, 130, 074501
[84] Morganson E., et al. 2018b, PASP, 130, 074501
[85] Myles J., Alarcon A., et al., 2020, Submitted to MNRAS
[86] Navarro J. F., Frenk C. S., White S. D. M., 1996, The Astro-

physical Journal, 462, 563
[87] Pandey S., et al. 2020, Perturbation theory for modeling galaxy

bias: validation with simulations of the Dark Energy Survey
(arXiv:2008.05991)

[88] Philcox O. H., et al. 2020, Journal of Cosmology and Astropar-
ticle Physics, 2020, 032–032

[89] Porredon A., et al., 2021a, To be submitted to PRD
[90] Porredon A., et al., 2021b, Phys. Rev. D, 103, 043503
[91] Prat J., et al. 2018, Physical Review D, 98
[92] Prat J., et al., 2021, To be submitted to PRD
[93] Rodríguez-Monroy M., et al., 2021, To be submitted to MN-

RAS
[94] Rozo E., et al. 2016, Monthly Notices of the Royal Astronom-

ical Society, 461, 1431–1450
[95] Saito S., et al. 2014, Physical Review D - Particles, Fields,

Gravitation and Cosmology, 90, 1
[96] Samuroff S., et al. 2019, Monthly Notices of the Royal Astro-

nomical Society, 489, 5453–5482
[97] Sánchez C., Prat J., et al., 2021, To be submitted to PRD
[98] Scherrer R. J., Weinberg D. H., 1998, ApJ, 504, 607
[99] Secco L. F., Samuroff S., et al., 2021, To be submitted to PRD
[100] Sevilla-Noarbe I., et al., 2020, Submitted to ApJS
[101] Sevilla I., et al. 2011, arXiv e-prints, p. arXiv:1109.6741
[102] Sheldon E. S., Huff E. M., 2017, The Astrophysical Journal,

841, 24
[103] Singh S., et al. 2017, Monthly Notices of the Royal Astronom-

ical Society, 471, 3827–3844
[104] Singh S., et al. 2019, Monthly Notices of the Royal Astronom-

ical Society, 491, 51–68
[105] Springel V., et al. 2005, Nature, 435, 629–636
[106] Suchyta E., et al. 2016, Monthly Notices of the Royal Astro-

nomical Society, 457, 786–808
[107] Takahashi R., et al. 2012, Astrophys. J., 761, 152
[108] Tinker J., et al. 2008, The Astrophysical Journal, 688, 709–728
[109] Tinker J. L., et al. 2010, The Astrophysical Journal, 724,

878–886
[110] To C., et al. 2021, Physical Review Letters, 126
[111] Troxel M., et al. 2018, Physical Review D, 98
[112] Virtanen P., et al. 2020, Nature Methods, 17, 261
[113] Wang Y., 2008, Physical Review D, 77
[114] Wechsler R. H., et al. 2021, arXiv e-prints, p.

arXiv:2105.12105
[115] Wibking B. D., et al. 2018, Monthly Notices of the Royal

Astronomical Society, 484, 989–1006
[116] Wibking B. D., et al. 2019, Monthly Notices of the Royal

Astronomical Society, 492, 2872–2896
[117] YuanS., EisensteinD. J., LeauthaudA., 2020,MonthlyNotices

of the Royal Astronomical Society, 493, 5551–5564
[118] Zacharegkas, G. et al. prep.
[119] Zehavi I., et al. 2011, The Astrophysical Journal, 736, 59
[120] Zheng Z., et al. 2005, TheAstrophysical Journal, 633, 791–809
[121] Zu Y., 2020, On the "Lensing is Low" of BOSS Galaxies

(arXiv:2010.01143)
[122] Zuntz J., et al. 2015, Astronomy and Computing, 12, 45–59
[123] van den Bosch F. C., et al. 2013, Monthly Notices of the Royal

Astronomical Society, 430, 725–746

Appendix A: Point mass marginalization

The point mass parameter (�) can also be expressed as
residual mass bias, � = X"/c where X" is approximately
related to the difference between the model and true estimate
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of halo mass below the scales of our model validity (Amin).
More accurately, X"halo can be expressed in terms of galaxy-
matter correlation as:

X" =

∫ Amin

0
3A? (2cA?)

∫ ∞

−∞
3Π Δbgm

(√
A2
? + Π2, I

)
, (A1)

where Δbgm = b
true
gm − bmodel

gm .
In Fig. 15 we compare the constraining power of 2 × 2pt

and 3×2pt simulated analysis at our fiducial scale cuts for dif-
ferent point mass parameter settings. We generate a noiseless
theory baseline datavector using the linear bias model and the
fiducial parameter values given in Table I. In the blue and
red filled contours, instead of analytically marginalizing over
the point mass parameters, we explicitly sample them when
analyzing 2 × 2pt and 3 × 2pt datavectors respectively. To test
the impact of point mass marginalization on the constraining
power, we also show the constraints obtained after fixing the
PM parameters to their fiducial value of zero using unfilled
contours. The black and green unfilled contours show the con-
straints using 2× 2pt and 3× 2pt datavectors respectively. We
see that although point mass marginalization has a significant
impact on the constraining power of the 2× 2pt analysis, it has
a small impact on the 3 × 2pt analysis. The main reason is
that, due to extra constraints from cosmic shear, we break the
degeneracy between PM parameters and cosmological param-
eters, and hence uncertainty in PM parameters do not dilute
our cosmology constraints.

As PM marginalization degrades the constraining power of
2 × 2pt significantly, it might be desirable to implement an
informative prior on the PM parameters. However, motivating
an astrophysical prior on the PM parameters is not possible
for our scale cuts as the majority of residual mass constraints
are contributed from the 2-halo regime, as shown in Fig. 16.
For simplicity, we assume all our galaxies occupy the center of
2.5 × 1013"�/ℎ mass halos. The input “truth" curve in black
solid line uses bgm that is generated using the Navarro-Frenk-
White profile [86] in the 1-halo regime (A < 0.5 Mpc/ℎ) and
one–loop PT in the 2-halo regime (A > 0.5 Mpc/ℎ). Given
this input halo mass, the halo model framework predicts the
effective large scale linear bias value [18]. The dashed blue
curve is generated using a linear bias model, using a linear bias
value that is 1f lower from this predicted value. Here f is the
uncertainity obtained from 2×2pt marginalized constraints on
the galaxy bias for first tomographic bin. The area between the
two curves below some scale is equal to total X" as calculated
using Eq. A1.

We show the contribution to X" separately for the 1-halo re-
gion (below the red dashed line) and 2-halo regimes (up to the
scales of 6Mpc/ℎ, which are our scale cuts for Wt (\)). We find
that the 2-halo regime contributes significantly more than the
1-halo region and the resulting X" value is significantly more
than the input halo mass of 2.5 × 1013"�/ℎ. An informative
prior would amount to understanding the galaxy-matter corre-
lation and its dependence on cosmology and galaxy bias model
from all scales below our scale cuts. Therefore we choose an
uninformative wide prior on the point mass parameters.

The baseline model parameterization assumes the point
mass parameter to be constant within each tomographic bin.
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Figure 15. Effect of point mass marginalization on the constraining
power of 2 × 2pt and 3 × 2pt. We see that the constraining power
of 2 × 2pt degrades significantly with point mass marginalization,
while for 3 × 2pt the change is minimal. Including the shear-shear
correlation breaks the degeneracy between point-mass (we show PM
for third bin, "halo [3]) and (8, leading to smaller sensitivity of
cosmology constraints on point mass constraints.
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Figure 16. We show the contribution to the residual mass shown in
Eq. A1 from different radial regimes. We find a significant contribu-
tion from 2-halo regime and therefore we cannot motivate an astro-
physical informative prior on the PM parameters, without putting an
informative prior on cosmology as well.

We test this assumption implicitly in the suite of Buzzard
simulations. The datavector measured in N-body Buzzard
simulation will capture the effects of evolving point-mass pa-
rameters due to the evolution of the galaxy-matter correlation
within a lens tomographic bin. As we have validated that our
scale cuts pass our threshold criteria of bias in cosmological
parameters being less than 0.3f, we can conclude that the ef-
fect of point mass parameter evolution is small. Here we also
test this effect explicitly by generating a simulated galaxy mat-
ter correlation function using the halo model. We assume a
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Figure 17. We show the effect of the evolution of galaxy matter
correlation functions on the PM parameters for each tomographic bin
in the black line. The red errorbars show the expected errorbars on
PM parameters for 2 × 2pt as shown in Fig. 15. The blue errorbars
are the constraints from 3 × 2pt.

constant HOD of the redMaGiC galaxies but include the evolu-
tion of halomass function and halo bias to predict the evolution
of the galaxy-matter correlation function. The contribution to
the PM parameter due to this evolution in each tomographic
bin is given by Eq. A1. In Fig. 17, we show this contribution to
each redshift bin by the black solid line. We compare this bias
with the expected level of uncertainty in the PM parameters by
plotting the marginalized constraints on these parameters as
shown in Fig. 15 for both 2× 2pt and 3× 2pt analyses. We see
that the uncertainty in PM parameters is significantly greater
than the expected bias.

Appendix B: Datavector residuals

We show the comparison between our measurements and
best-fit theory datavector in Fig. 18. We show the residuals
between data and best-fit theory model from both the fiducial
model as well as with -lens = 0.87 model . Using the fiducial
linear bias model scale cuts of (8,6) Mpc/ℎ (that leaves 302
datapoints in total), we find a minimum j2 of 347.2 and 351.1
for the fiducial model and -lens = 0.87 model respectively.

Appendix C: Halo mass inference

In this section we detail the methodology to infer the host
halo mass of our redMaGiC lens galaxy sample from the con-
straints on galaxy bias parameters and number density. We
use the halo model framework to make this prediction and
parameterize the number of galaxies in a halo of mass " in

tomographic bin 9 as # 9
g (") = #

9
cen (") + # 9

sat (") where
#
9
cen is the number of central galaxies and # 9

sat is the number
of satellite galaxies. We parameterize these two components
as:

#
9
cen =

5
9

cen
2

[
1 + erf

(
log" − (log"min) 9

(flog" ) 9

)]
(C1)

#
9

sat =
1
2

[
1 + erf

(
log" − (log"min) 9

(flog" ) 9

)]
×

(
"h

"
9

1

)U 9

. (C2)

Here we have five free parameters, 5
9

cen, (log"min) 9 ,
(flog" ) 9 , " 9

1 and U 9 , that we marginalize over. We can pre-
dict the comoving number density (=(I) 9 ) and galaxy bias for
a given tomographic bin 9 , 1 91, from galaxy HOD as follows:

= 9 (I) =
∫ ∞

0
3"

3=

3"
#
9
g (")

1
9

1 =

∫
3I
=
9
6 (I)
= 9 (I)

∫ ∞

0
3"

3=

3"
#
9
g (")1halo

1 (", I)

(C3)

We use the [108] halo mass function (3=/3") and the [109]
relation for linear halo bias (1halo

1 (", I)).
Therefore, Eqs. C3 allow us to predict the number density

and galaxy bias values. We then sample theseHODparameters
to fit the datavector ®D� = = 9 (I1)...= 9 (I=), 1 91, 1

9

2] of length
3 where = 9 (I1)...= 9 (I=) are the = = 3 − 2 observed comoving
number density of redMaGiC galaxies as shown in middle
panel of Fig.19 and 1 91 and 1 92 are the marginalized mean bias
values obtained at our fiducial scale cut. For a given set of
HOD parameters (ΘH), the theoretical prediction is given by
TH and we write our log-likelihood as:

lnL( ®D� |Θ) = −
1
2

[
( ®D�− ®T� (ΘH)) C�−1 ( ®D�− ®T� (ΘH))T

− ln( |C� |)
]

(C4)

In order to account for variation of HODwithin a tomographic
bin that contributes to the variation on = 9 (I) within each to-
mographic bin as seen in Fig.19, we implement an analytical
marginalization scheme. We change the covariance of our
datavector C� as :

C� → C� + U2I� (C5)

where I� is a diagonal matrix of dimension 3 × 3 whose
diagonal elements equal to 1 from index 1 to d-1, and equal to
0 otherwise. We sample over the parameter U2 , treating it as a
free parameter.
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Figure 18. The measurements of F(\) and Wt (\) with redMaGiC sample are shown with black dots. We show the best fit using the fiducial
Linear bias model in blue and model with -lens = 0.87 in orange.
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Figure 19. This figure shows the marginalized constraints on the large-scale bias of redMaGiC sample for the five tomographic bins on the left
panel. The black dots denote the mean, and the error bars correspond to 68% credible interval. Using these constraints and co-moving number
density (middle panel), we infer the constraints on mean halo mass, as shown in the right panel for five tomographic bins. The red line and
dots correspond to MCMC samples. We use the Linear bias model with -lens = 0.87.


