we find that the galaxy merger occurred prior to the BNS coalescence. By using velocity dispersion estimates and the position of the shells, we constrain the delay time of the BNS coalescence. The binary formed due to dynamical interactions during the galaxy merger, the subsequent time elapsed can constrain the star formation history (SFH) of the galaxy assuming that the galaxy merger produced a star formation burst, but find little to no on-going star formation in either spatially–resolved broadband SED or spectral fitting. We use the best–fit SFH to estimate the BNS merger rate in this type of galaxy, as \(R_{\text{NSM}} \) = 7.0 \(\pm 3.3 \) \(\times \) 10^{-6} yr^{-1}. If star formation is the only considered BNS formation scenario, the expected number of BNS mergers from early–type galaxies detectable with LIGO during its first two observing seasons is 0.38–0.04, as opposed to ~ 0.5 from all galaxy types. Hypothesizing that the binary formed due to dynamical interactions during the galaxy merger, the subsequent time elapsed can constrain the delay time of the BNS coalescence. By using velocity dispersion estimates and the position of the shells, we find that the galaxy merger occurred \(t_{\text{mer}} \lesssim 200 \) Myr prior to the BNS coalescence.

Keywords: galaxy: evolution — galaxies: individual (NGC 4993) — galaxy: structure — gravitational waves

1. INTRODUCTION

The first identification of the optical counterpart (LIGO Scientific Collaboration et al. 2017) of a gravitational wave (GW) signal (Abbott et al. 2017) marks the beginning of a new era for multi-messenger astronomy. The coalescence of neutron stars is expected to have strong optical and near-infrared signatures in the form of a kilonova, the ejecta from which are heated by the decay of heavy nuclei produced via r-processes. Short Gamma–Ray Bursts (sGRB) are likely to be related to the same coalescence events (Eichler et al. 1989), but the formation of the binary and the physics involved in merging are still a matter of debate (Lipunov et al. 1997; Faber & Rasio 2012).

The optical counterpart to the BNS coalescence event GW170817 was discovered independently by several collaborations using optical telescopes, including the Dark Energy Camera (DECam; Flaugher et al. 2015) GW team (Soares-Santos et al. 2017). In this work we use this DECam data and supplement it with Hubble Space Telescope, AAT spectroscopic data and with publicly available datasets to understand the source in the context of its host galaxy and the local environment.

In particular, we relate the BNS formation to the dynamics and stellar evolution of the host over time, asking whether the binary system was born as such, or whether dynamical interactions caused its formation. Dynamically–driven binary formation has been proposed for BBH (e.g. Rodriguez et al. 2016).

Previous studies (Carter et al. 1988) classified this galaxy as an atypical elliptical galaxy with faint concentric shells and spectral features suggesting that the galaxy has undergone a merging event. Several analytical and numerical studies support the galaxy merger scenario for the formation of shells in galaxies (e.g. Quinn 1984; Pop et al. 2017), and show that the distribution of shells can constrain the time of the merger event. We study the evolution of this galaxy to discern between different BNS formation scenarios and estimate the rate of BNS formation in early-type galaxies, using Dark Energy Survey (DES) data to place NGC4993 in the context of the galaxy population.

2. DATA

2.1. Photometric data: DECam, VHS and HST
Figure 1. Left panel: DECam coadded image of NCG4993 in gri. Shell structures indicative of a recent galaxy merger are clearly visible. Middle panel: r-band residuals from GalFit after subtraction of the best-fit single Sérsic light profile. Right panel: F606W-band HST ACS image with a 3 component galaxy model subtracted. Dust lanes crossing the centre of the galaxy are evident. The green lines show the position of the transient. The BNS counterpart is only present in the middle panel.

The DECam images used in this work were taken as part of the DECam-GW follow up program between the nights of 2017 August 17 and September 1, using ugrizY filters. We also use public ugrizY DECam data from June 2015 to avoid contamination in the transient region. In addition, we extract YJK data from the VISTA Hemisphere Survey (VHS; McMahon et al. 2013), covering the host galaxy. The images are coadded and registered to a common pixel scale (0.2636″) using SWARP (Bertin et al. 2002) with 3.5 sigma clipping to remove cosmic ray artifacts. An RGB coadded image of the galaxy is presented in Figure 1. We build a χ^2 detection image from the r, i and z-band data and run SExtractor (Bertin & Arnouts 1996) in dual mode on the coadded images.

The photometry is corrected for galactic extinction. In order to compare the galaxy properties to a broader sample, we also use DES data from the first year of observations (Y1; Drlica-Wagner et al. 2017). We use MAG.Auto magnitudes unless otherwise stated.

NGC4993 was also observed during HST Cycle 24 (PropID 14840, PI: Bellini) using ACS in F606W. The data were publicly released in April 2017 and were accessed via the Hubble Source Catalog (HSC; Whitmore et al. 2016).

2.2. Spectroscopic data: 6dF and AAT

The 6dF Galaxy Survey (Jones et al. 2004) final release (Jones et al. 2009) includes an optical spectrum of the center of NGC4993 with an estimated redshift ($z = 0.009680 \pm 0.000150$).

Spectra of 14 galaxies with $v_{\text{helio}} \sim 3000$ km s$^{-1}$ and within one degree radius of NGC4993 were obtained in one target of opportunity exposure of the AAOmega spectrograph at the Anglo-Australian Telescope (AAT) on 2017 August 27. Of those, 10 spectral fits passed quality cuts. All the spectra used here are centered on their galaxy nucleus with a 2″ aperture.

3. HOST MORPHOLOGY

3.1. CAS and GalFit

We begin our study of NGC4993 with an analysis of its morphological properties, employing the CAS non-parameteric light quantification (Conselice 2003) and parametric Sérsic light profile fitting with GalFit (Peng et al. 2010). Both methods utilise a mask to exclude other sources in the image and the location of the kilonova event. The CAS system is able to pick out the salient features of galaxy morphology, allowing galaxy types to be assigned and identifying objects that are likely to have undergone a recent major merger (see Conselice 2003 for details). Meanwhile, fitting the light profile additionally provides us with an alternative estimate of the total magnitude and can reveal more subtle aspects of galaxy morphology within the residuals of the model-subtracted image.

GalFit is run on the DES and VHS images in two ways: band-by-band and simultaneously across all bands using a modified version, GalFit-M (Vika et al. 2013). In the second case the Sérsic fitting parameters are allowed to vary with wavelength as a second-order polynomial. We extract the PSF model required by GalFit from the coadd images with PSFEx (Bertin 2011) and initialize the fitting parameters based on measurements of the galaxy from SExtractor. All parameters are
left free without constraints, except for the central position in the single-band fits. This is allowed to vary by only ±1 pixel as it is well-constrained by SExtractor already.

In order to assess the stability of GALFIT and obtain an estimate of the uncertainties on the measurements, each single-band run is performed 10,560 times, varying the inputs around their nominal values. We take the median as our final measurement and the standard deviation as the uncertainty.

3.2. Results

Following the definitions given in Conselice (2003), we find: concentration $C = 3.348 \pm 0.035$, asymmetry $A = 0.04 \pm 0.01$, and clumpiness $S = 0.05 \pm 0.05$. These values are typical for an early-type galaxy. In Figure 2 we compare these values to field galaxies of similar masses (within 0.2 dex of NGC4993) and redshift (z < 0.2) from the GAMA survey, and to a sample of sGRB hosts (Conselice et al. in prep.) taken in F814W imaging from HST. NGC4993 stands out as peculiar with respect to other GRB hosts: such objects tend to lie on the more highly asymmetric side of late-type galaxies.

The results from the single Sersic fit across all bands are summarized in Table 1 (the band-by-band fits give broadly consistent results). We find an increase in Sersic index towards redder bands and a rotation in the position angle. This rotation of bluer versus redder bands suggests there could be two superimposed stellar populations with differing orientations. This may have arisen during the course of the galaxy’s secular evolution but could also be caused by a minor galaxy merger, as indicated by the presence of shells.

The middle panel of Figure 1 shows DECam r-band residuals from GALFIT and the position of the transient. At least four shell structures are clearly visible. Closer inspection with HST data (right panel in Figure 1) reveals a possible further broad inner shell, on which the transient seems to lie, and obvious dust lanes (visible also as a negative residual in the DECam version). The r-band absolute magnitude from a 4 sq.arcsec region around the transient location in the galaxy-subtracted template image is -10.65. This luminosity implies a rather high stellar density in the locale of the BNS coalescence. In summary, we find compelling evidence for a recent minor galaxy merger in NGC4993, and the location of the kilonova event with respect to the shells leads us naturally to ask whether there is a causal connection between the two.

From Figure 2 we see that clear major galaxy mergers are unusual amongst sGRB hosts. Furthermore, the other sGRBs are at cosmological distances and thus are mostly undergoing extensive galaxy formation through star formation or merging. If the hosts have to be related by some common features, this is an indication that NGC4993 has undergone some merging activity, but a minor merger such that the bulk morphology is still elliptical. We thus explore the possibility that the kilonova was a result of a recent galaxy merger in NGC4993.

4. PHOTO METRIC AND SPECTROSCOPIC SED

4.1. SED fitting methods

We use pPXF (Cappellari & Emsellem 2004; Cappellari 2017), for the spectral fitting. It enables extraction of the stellar kinematics and stellar population from absorption line spectra of galaxies, using a maximum penalized likelihood approach. We use the Miles stellar libraries, and fit over the wavelengths $4000 - 7409 \text{ Å}$ of the 6dF spectrum, where a strong sky line contaminates the flux.

We use LePHARE (Arnouts et al. 1999, Ilbert et al. 2006) for the broadband Spectral Energy Distribution (SED) fitting. We add a 0.05 systematic uncertainty in quadrature to the magnitudes. The simple stellar population (SSP) templates used are Bruzual & Charlot (2003), with two metallicities (Z_{\odot} and $2.5Z_{\odot}$), a Chabrier (2003) Initial Mass Function (IMF) and a Milky Way (Allen 1976) extinction law. The SFH chosen is lognormal:

$$\Psi(t, t_0, \tau) = \frac{1}{t\sqrt{2\pi\tau^2}} e^{-\frac{(\ln t - \ln t_0)^2}{2\tau^2}}, \hspace{1cm} (1)$$
Filter & MAG_AUTO & Mag & r_e & n & ϵ & θ \\
\hline
u & 14.24 & 14.15 & 61.8 & 3.2 & 0.15 & -13.9 \\
g & 12.95 & 12.80 & 62.5 & 3.4 & 0.15 & -12.8 \\
r & 12.08 & 11.90 & 63.5 & 3.7 & 0.16 & -11.2 \\
i & 11.65 & 11.45 & 64.4 & 4.0 & 0.16 & -9.9 \\
z & 11.34 & 11.13 & 65.3 & 4.3 & 0.16 & -8.4 \\
Y & 11.13 & 10.96 & 65.9 & 4.5 & 0.16 & -7.5 \\
Y_{VHS} & 11.27 & 11.00 & 65.9 & 4.5 & 0.16 & -7.5 \\
J & 11.00 & 10.77 & 67.3 & 5.0 & 0.17 & -5.2 \\
K_s & 11.08 & 10.68 & 72.9 & 6.7 & 0.19 & +3.5 \\
\hline
\multicolumn{7}{c}{\pm5 \times 10^{-4} \pm0.07 \pm3 \times 10^{-3} \pm4 \times 10^{-5} \pm5 \times 10^{-3}}
\end{tabular}

Table 1. Outputs from Galfit parametric Sérsic fits performed on the ugrizY DECam coadd images and YJKs VHS data. The fit was joint across bands, allowing the effective radius, r_e, (in pixels), Sérsic index, n, ellipticity, $\epsilon = 1 - b/a$, and position angle, θ, to vary with wavelength. One pixel corresponds to 0.2636". The final row lists indicative errors based on the single band analysis.

Figure 3. Left panel: spectroscopic fit of the 6dF optical spectrum. The black line is the observed spectrum, the red line is the pPXF fit for the stellar component, and the orange line is the best-fit including ionized gas emission lines. The zoomed panels show H_{β}, OIII, NII and H_{α} lines. The green points at the bottom are the fit residuals, while the purple line is the gas-only best-fit model spectrum. Right panel: BPT diagram for NGC4993 (red star) and the other galaxies (black points) in the galaxy group with AAT spectra available. The dashed lines represent the Kewley et al. (2006) classification method for AGN, star-forming (HII) and composite (Comp) galaxies. Many of the group galaxies have very weak AGN or LINER-like emission. Error bars represent 1σ error from the propagation of fit errors on line strengths.

4.2. SED fitting results

Figure 3 shows the best fit model of the 6dF spectrum, which results in a reduced χ^2 of 1.22. An analysis of the mass fraction in age shows that part of the core galaxy stellar population has a supersolar metallicity, but the weighted mean value $\langle[M/H]\rangle = -0.012 \pm 0.010$ is marginally consistent with solar metallicity. The mean age is 11.298 ± 0.054 Gyr, and the mass-to-light ratio is 5.23 ± 0.15 in r-band.

The stellar model fit reveals the existence of weak ionized gas emission lines. However, the line ratios from the fit suggest they are produced by a harder ionizing source than star-formation, formally lying in the AGN
reddening is \(E(B - V) = 0.12 \pm 0.50 \) in the case of
\(I(H_\beta)/I(H_\alpha) = 3.1 \), which is expected in the case of
AGN activity. We therefore restrict our dust models to
have reddening values 0.1, 0.2, 0.3, 0.4, 0.5 in the photo-
metric fits.

The photometric best–fitting template has a solar
metallicity, a quickly declining log-normal SFH with
\(t_0 = 3 \) Gyr and \(\tau = 0.1 \). A low reddening \(E(B-V) = 0.1 \)
is preferred, and the stellar mass is \((2.95 \pm 0.65) \times 10^{10} M_\odot \).
The inclusion of a late SFH burst is disfavored
by the fitting apart from intermediate apertures.

Previous work found that the presence of dust lanes
may bias the galaxy stellar mass from unresolved galaxy
SED fits to lower values (Sorba & Sawicki 2015).
The total stellar mass from fitting over the SExtractor
segmentation map of NGC4993 is \((3.8 \pm 0.2) \times 10^{10} M_\odot \),
more than 1\(\sigma \) higher than the unresolved SED fitting.
The specific SFR (sSFR) map from our pixel SED fits
is shown in Figure 4, where the shell structure is clearly
visible, suggesting that the sSFR is slightly more accen-
tuated in the stellar halo compared to the inner parts.
Younger ages (by \(\sim 2 \) Gyr) are also preferred in the outer
regions, though we still do not find evidence for a star
formation burst at late times, and explain our results
by the stripping of stellar populations from the lower-
mass galaxy in a minor dry merger. A dust model with
\(E(B - V) = 0.1 \) is preferred in the inner few kpc, while
\(E(B - V) = 0 \) is found outside. Despite the presence
of dust lanes, an analysis of the HST photometry and
a comparison with extinction models suggests that the
effect of dust is not extreme, with reddening values that
are consistent with 0.1 in the core. We therefore believe
that the dust obscuration does not play a significant role
in our SFR estimates.

4.3. Pixel Color Diagrams

In Figure 4 we show a color-magnitude diagram for all
the pixels within the field of view of the DECam data
near the galaxy. The image has been cleaned of stars
and other contamination, thus all points come from the
galaxy itself. The position of the GW source, 10.6\('' \) off-
set from the center, is the cyan colored pixels, while the
center of the galaxy is shown in the red points. This
galaxy is well represented by a pixel “main sequence”
that is bluer at fainter levels, which is typical of early–
type galaxy color gradients (e.g., Lanyon-Foster et al.
2007). We conclude that there is no significant difference
between the transient position and other outer light, al-
though it is bluer than the core region. This further
supports the scenario in which the BNS formation is not
related to some particular recent star formation event in
this region.

Figure 4. Upper panel: sSFR map resulting from the pixel
SED fitting of DES+VHS bands. Other objects have been
masked out. \(x \) and \(y \) axes correspond to the map pixels. One
pixel corresponds to a physical size of 0.526 kpc at the galaxy
redshift. Lower panel: pixel color-magnitude diagram for the
pixels covering NGC4993 from DECam \(g \) and \(r \) single epoch
exposures taken previously to the BNS event. The core of
the galaxy is shown in red, while the cyan points represent
the 1.5\('' \) around the location of the BNS event (10.6\('' \) from
the center).
5. DISCUSSION AND CONCLUSIONS

5.1. BNS formation and delay time under the hypothesis of galaxy merger

In the most accepted shell formation scenarios the shells are stellar debris coming from the less massive, stripped galaxy, and the arcs form at the apocenter of the orbits of the infalling material (Quinn 1984).

Based on our results, we believe that NGC4993 experienced a dry minor galaxy merger with visible signs. The shells are expected to be washed out within a time that depends on the velocity dispersion at their position. We estimate the shell survival time in two ways, based on the velocity dispersion of the galaxy as well as the velocity dispersion of the shell itself. From the 6dF spectrum the line–of–sight central velocity dispersion is \(\sigma_v = (160.0 \pm 9.1) \text{ km s}^{-1} \). We estimate its value at the position of the transient. The velocity dispersion of early type galaxies drops from its central peak value at larger radii, and observations show that the maximum drop to the outer parts of ellipticals near the effective radius is \(\sim 40\% \) of the central value (Emsellem et al. 2004). Based on the distance of the shell from the center, \(R \approx 4 \text{ kpc} \), we estimate that the dynamical time at this radius is \(t_{\text{dyn}} \approx R/\sigma_v \approx 60 \text{ Myr} \) (the line-of-sight velocity is relevant here, given the shell’s geometry, but e.g. if we assume a 3D isotropic velocity dispersion it would reduce the dynamical time by \(\sqrt{3} \)).

So far we have no measurement of the shell’s velocity dispersion, but estimates from the literature suggest for similar shells in other galaxies \(\sigma_v \approx 20 \text{ km s}^{-1} \) (Quinn 1984). This would give a dynamical time scale of \(t_{\text{dyn}} \approx 192 \text{ Myr} \). Detailed simulations of shells in other galaxies suggest that survival time could be even larger that 1 Gyr, depending on the assumed scenario (Pop et al. 2017).

The survival time of the shell could be used as an upper limit for the time the minor merger took place, i.e. \(t_{\text{dyn}} \geq t_{\text{merg}} \), so we estimate \(t_{\text{merg}} \lesssim 200 \text{ Myr} \).

If the BNS was formed as such in a shell, then we would have expected to see evidence for recent star formation, but we find no indication of this. In the absence of star formation it is plausible that the BNS coalescence was triggered by a dynamical process, e.g. NS–NS capture or the destabilization of a pre-existing wide-separation binary. These processes will be quite sensitive to the stellar density which, given the Sérsic index and the luminosity from the residual image found in section 3.2, is high in the center of NGC4993 and around the transient position. If this dynamical hypothesis is true, then the delay time \(\Delta t_{\text{NSM}} \) between the BNS formation and coalescence is \(\lesssim 200 \text{ Myr} \). On the other hand, Blanchard et al. (2017) find a median delay time of \(11^{+0.7}_{-1.4} \text{ Gyr} \) under the assumption that the binary was formed through secular SF.

5.2. Galaxy environment

If the binary formation is related to dynamical processes in galaxy merging as we are investigating here, then this is most likely to happen in galaxy groups and low mass clusters. According to the 2MASS catalog (Tully 2015), NGC4993 resides in a group, of which we analyze the remaining 7 galaxies. A spectral analysis shows that NGC4993 is not the only galaxy showing AGN activity (see Figure 3), but it is peculiar in terms of age, metallicity and mass-to-light ratio. It shows an older stellar population (the mean age of the other 13 galaxies is \(\log(Age) = 9.56 \pm 0.17 \), lower metallicity (mean: \(M/H = -0.31 \pm 0.11 \)), and higher \(M/L_r \) (mean: 2.41 \pm 0.45) than the average. The group has a projected virial radius of \(R_{\text{vir}} = 0.36 \text{ Mpc} \) and a line-of-sight velocity dispersion \(\sigma_v = 143 \text{ km s}^{-1} \) (Tully 2015). The crossing time is therefore \(t_{\text{cr}} \sim R_c/(\sqrt{2} \sigma_v) \sim 1.6 \text{ Gyr} \).

If galaxy mergers are correlated to BNS coalescence, future GW studies could possibly concentrate on galaxy groups (but note that these are crowded regions and therefore matching candidates to a host could be difficult). In order to have precise measurements of \(H_0 \), one needs to identify the host galaxy redshift clearly. When the match is clear, the properties of the type of host galaxy found could help future studies to select the right host galaxy or create galaxy catalogs of likely hosts for GW EM follow-up and untriggered kilonova searches (Doctor et al. 2017). In fact, large photometric surveys such as DES, LSST or WFIRST are expected to host galaxy follow up could help future studies to select the right host galaxy or create galaxy catalogs of likely hosts for GW EM follow-up and untriggered kilonova searches (Doctor et al. 2017). In fact, large photometric surveys such as DES, LSST or WFIRST are expected to host galaxy or create galaxy catalogs of likely hosts for GW EM follow-up and untriggered kilonova searches (Doctor et al. 2017).

5.3. BNS merging constraints

We derive a constraint on neutron stars merging rate at time \(t \) by using:

\[
R_{\text{NSM}}(t) = \alpha R_{\text{NS}}(t'),
\]

where \(\alpha \) is the fraction of neutron stars which are in binaries, \(t' = t - \Delta t_{\text{NSM}} \) and the fraction of mass of formed stars that are NS is:

\[
R_{\text{NS}}(t') = \int dM_{\star} \Phi(M_{\star}) \Psi(t_{\star}) \Theta_{\text{NS}}(M_{\star}),
\]

with \(\Phi(M_{\star}) \) being the IMF, \(\Psi(t_{\star}) \) is our best fit SFH, \(\Theta_{\text{NS}}(M_{\star}) \) is 1 for star mass ranges of \(8 M_{\odot} < M < \).
20 \, M_{\odot}$, zero otherwise. We drop the metallicity dependence in Θ_{NS} because we only consider a solar metallicity for the galaxy, as a result of our spectroscopic fit. t_* is the time when the progenitor of the NS was formed, therefore satisfying $t^* = t_* + t_{\text{life}}$, with t_{life} being the lifetime of the progenitor before becoming a NS. We assume a $t_{\text{life}} = 0.02$ Gyr, but our calculation is insensitive to this choice as the typical lifetime of these massive stars ($\sim 0.01 - 0.03$ Gyr) is much shorter than the timescale over which the SFH found for NGC4993 is changing at late times. We assume a Chabrier IMF, but this choice is not relevant as we are only exploring the high mass end of the IMF. Assuming $\alpha = 0.002$ and the distribution of Δt_{NSM} from Vangioni et al. (2016) (their Figure 3 for solar metallicity), and our best fit SFH from Eq. 1 with $t_0 = 3$ Gyr and $\tau = 0.3$, we get a NS formation rate of $R_{\text{NS}} = 3.6_{-3.6}^{+2.8} \times 10^{-5}$ yr$^{-1}$ and a BNS merger rate of $R_{\text{NSM}} = 5.7_{-3.3}^{+0.57} \times 10^{-6}$ yr$^{-1}$ for the whole galaxy. Errors reflect the uncertainty on the SFH, which dominates our errors: they represent the two central quartiles of the rates distribution computed with the SFHs of the pixel SED fitting over the galaxy.

Given the sensitivity of the BNS merger event rate to the recent SFR of a galaxy, it is somewhat surprising that GW170817 occurred in an old, early type galaxy. We therefore ask what is the probability of observing such an event in any early–type galaxy within the LIGO–detectable volume. To make this estimate we integrate the stellar mass function of early–type galaxies from Weigel et al. (2016) and scale the per–solar–mass rate from Eq. 2 to the mass contained within the LIGO–detectable volume. To this end we estimate the stellar mass function of early–type galaxies from Gladders et al. (2013), finding $R_{\text{NSM}}^\text{all} \approx 270$ yr$^{-1}$Gpc$^{-3}$ and ~ 0.5 expected events.

This result shows that it is unlikely that we observed one such BNS merger with LIGO over the combined nine months of operations in an early–type galaxy. The assumptions in the calculation include the fraction of NS that form in binaries ($\alpha = 0.002$) and the delay time distribution, both coming from binary star models (where the progenitors of the BNS were already a bound system) and satisfying Milky Way constraints. If the BNS formation mechanism is via dynamical interaction, our result could point to a higher value of α or a shorter Δt_{NSM} for systems that recently underwent a galaxy merger, more so for those that have high stellar density (such as early–type galaxies). It is therefore of interest to know the fraction of galaxies similar to NGC4993 that show similar signs of a galaxy merger in the form of visible shells. We select galaxies from the first year of DES data with size, surface brightness and Sérsic index within 10% of the best fit values for NGC4993. We find 1100 such galaxies, and visually inspect them to identify shell galaxies. Only 15% of these objects display shells, and so NGC4993 is unusual amongst early-type galaxies. This is far from conclusive evidence for a merger origin of BNS events. However, the coincidence of evidence for a recent merger in a galaxy for which a BNS event was otherwise improbable is compelling.
2013) including ERC grant agreements 240672, 291329, and 306478. We acknowledge support from the Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO), through project number CE110001020.

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

AP, WH and OL are supported by ERC Advanced Grant FP7/291329. Based in part on data acquired through the Australian Astronomical Observatory. Based on data obtained from the Mikulski Archive for Space Telescopes (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other grants and contracts.

REFERENCES

Faber, J. A., & Rasio, F. A. 2012, LRR, 15, 8
Tully, R. B. 2015, AJ, 149, 171